

Welcome to

[image: AtomVM!]
Welcome to AtomVM, the Erlang virtual machine for IoT devices!

AtomVM is a lightweight implementation of the the Bogdan Erlang Abstract Machine (_aka_, the BEAM), a virtual machine that can execute byte-code instructions compiled from Erlang or Elixir source code. AtomVM supports a limited but functional subset of the BEAM opcodes, and also includes a small subset of the Erlang/OTP standard libraries, all optimized to run on tiny micro-controllers. With AtomVM, you can write your IoT applications in a functional programming language, using a modern actor-based concurrency model, making them vastly easier to write and understand!

AtomVM includes many advanced features, including process spawning, monitoring, message passing, pre-emptive scheduling, and efficient garbage collection. It can also interface directly with peripherals and protocols supported on micro-controllers, such as GPIO, I2C, SPI, and UART. It also supports WiFi networking on devices that support it, such as the Espressif ESP32. All of this on a device that can cost as little as $2!

Warning

AtomVM is currently in Alpha status. Software may contain bugs and should not be used for mission-critical applications. Application Programming Interfaces may change without warning.

Contents:

	Welcome to AtomVM!
	What is AtomVM?

	Why Erlang/Elixir?

	Design Philosophy

	Licensing

	Source Code

	Contributing

	Where to go from here

	Release Notes
	Required Software

	Getting Started Guide
	Getting Started on the ESP32 platform

	Getting Started on the STM32 platform

	Getting Started on the Raspberry Pi Pico platform

	Getting Started on the Generic UNIX platform

	Getting Started with AtomVM WebAssembly

	Where to go from here

	AtomVM Tooling
	atomvm_rebar3_plugin

	ExAtomVM

	atomvm_packbeam

	Where to go from here

	Programmers Guide
	AtomVM Features

	AtomVM Development

	Applications

	Core APIs

	ESP32-specific APIs

	Peripherals

	Protocols

	Socket Programming

	Where to go from here

	Network Programming Guide
	Station (STA) mode

	AP mode

	STA+AP mode

	SNTP Support

	NVS Credentials

	Stopping the Network

	Build Instructions
	Downloading AtomVM

	Source code organization

	Platform Specific Build Instructions

	Building for Generic UNIX

	Building for ESP32

	Building for STM32

	Building for Raspberry Pi Pico

	Building for emscripten

	AtomVM Internals
	What is an Abstract Machine?

	AtomVM Data Structures

	The Scheduler

	Tasks and synchronization mechanisms

	Mailboxes and signals

	Stacktraces

	AtomVM WebAssembly port

	Memory Management
	The Context structure

	Simple Terms

	Boxed terms

	Lists

	Special Stack Types

	Garbage Collection

	Packbeam Format
	Overview

	Packbeam Header

	File encodings

	API Reference Documentation
	Erlang Libraries

	AtomVM ‘C’ APIs

	Contributing
	Git Recommended Practices

	Coding Style

	Changelog
	[0.6.5] - 2024-10-15

	[0.6.4] - 2024-08-18

	[0.6.3] - 2024-07-20

	[0.6.2] - 25-05-2024

	[0.6.1] - 2024-04-17

	[0.6.0] - 2024-03-05

	[0.6.0-rc.0] - 2024-03-03

	[0.6.0-beta.1] - 2024-02-28

	[0.6.0-beta.0] - 2024-02-08

	[0.6.0-alpha.2] - 2023-12-10

	[0.6.0-alpha.1] - 2023-10-09

	[0.6.0-alpha.0] - 2023-08-13

	[0.5.1] - Unreleased

	[0.5.0] - 2022-03-22

Indices and tables

	Index

	Module Index

	Search Page

Welcome to AtomVM!

Welcome to AtomVM, the Erlang virtual machine for IoT devices!

What is AtomVM?

AtomVM is a ground-up implementation of the Bogdan Erlang Abstract Machine (a.k.a the BEAM) and is designed specifically to run on small systems, such as the Espressif ESP32 and ST Microelectronics STM32 micro-controllers. It allows developers to implement IoT applications in the Erlang or Elixir programming languages and to deploy those applications onto tiny devices. (Users may also target their applications for fully-fledged operating systems, such as Linux, FreeBSD, and MacOS, though in most cases deployment to traditional computers is done for development and testing purposes, only.)

AtomVM features include:

	An Erlang runtime, capable of executing bytecode instructions in compiled BEAM files;

	Support for all the major Erlang and Elixir types, including integers, strings, lists, maps, binaries, Enums, and more;

	A memory-managed environment, with efficient garbage collection and shared data, where permissible;

	Support for truly functional programming languages, making your programs easier to understand and debug;

	A concurrency-oriented platform, allowing users to spawn, monitor, and communicate with lightweight processes, making it easy for your IoT devices to perform tasks simultaneously;

	Support for symmetric multi-processing (SMP); leverage all available cores on platforms that support it (e.g., ESP32) without any code changes;

	A rich set of networking APIs, for writing robust IoT applications that communicate over IP networks;

	A rich set of APIs for interfacing with standard device protocols, such as GPIO, I2C, SPI, and UART;

	And more!

Why Erlang/Elixir?

The environments on which AtomVM applications are deployed are significantly more constrained than typical programming environments. For example, the typical ESP32 ships with 520K of RAM and 4MB of flash storage, roughly the specs of a mid 1980s desktop computer. Moreover, most micro-controller environments do not support native POSIX APIs for interfacing with an operating system, and in many cases, common operating system abstractions, such as processes, threads, or files, are simply unavailable.

However, because the BEAM is provides a pre-emptive multitasking environment for your applications, many of the common operating system abstractions, particularly involving threading and concurrency, are simply not needed. As concurrently-oriented languages, Erlang and Elixir support lightweight “processes”, with message passing as the mechanism for inter-(erlang)process communication, pre-emptive multi-tasking, and per-process heap allocation and garbage collection.

In many ways, the programming model for Erlang and Elixir is closer to that of an operating system and multiple concurrent processes running on it, where operating system processes are single execution units, communicate through message passing (signals), and don’t share any state with one another. Contrast that with most popular programming languages today (C, C++, Java, Python, etc), which use threading abstractions to achieve concurrency within a single memory space, and which subsequently require close attention to cases in which multiple CPUs operate on a shared region of memory, requiring threads, locks, semaphores, and so forth.

As an implementation of the BEAM, AtomVM provides a modern, memory managed, and concurrency-oriented environment for developing applications on small devices. This makes writing concurrent code for micro-controllers (e.g., and application that reads sensor data, services HTTP requests, and updates the system clock, all at the same time) incredibly simple and natural – far easier writing programs that use concurrency than C, C++, or even, for example, Micropython.

In addition, because it is targeted for micro-controller environments, AtomVM provides interfaces for integrating with features commonly seen on micro-controllers, such as GPIO pins, analog-to-digital conversion, and common industry peripheral interfaces, such as I2C, SPI, and UART, making AtomVM a rich platform for developing IoT applications.

Finally, one of the exciting aspects about modern micro-controllers, such as the ESP32, is their integration with modern networking technologies, such as WiFi and Bluetooth. AtomVM leverages Erlang and Elixir’s natural affinity with telecommunications technologies to open up further possibilities for developing networked and wireless IoT devices.

We think you will agree that AtomVM provides a compelling environment not only for Erlang and Elixir development, but also as a home for interesting and fun IoT projects.

Design Philosophy

AtomVM is designed from the start to run on small, cheap embedded devices, where system resources (memory, cpu, storage) are tightly constrained. The smallest environment in which AtomVM runs has around 512k of addressable RAM, some of which is used by the underlying runtime (FreeRTOS), and some of which is used by the AtomVM virtual machine, itself, leaving even less RAM for your own applications. Where there is a tradeoff between memory consumption and performance, minimizing memory consumption (and heap fragmentation) always wins.

From the developer’s point of view, AtomVM is designed to make use of the existing tool chain from the Erlang and Elixir ecosystems. This includes the Erlang and Elixir compilers, which will compile Erlang and Elixir source code to BEAM bytecode. Where possible, AtomVM makes use of existing tool chains to reduce the amount of unnecessary features in AtomVM, thus reducing complexity, as well as the amount of system resources in use by the runtime. AtomVM is designed to be as small and lean as possible, providing as many resources to user applications, as possible.

Licensing

AtomVM is licensed under the terms of the Apache2 and LGPLv2 licenses.

Source Code

The AtomVM Github Repository contains the AtomVM source code, including the AtomVM virtual machine and core libraries. The AtomVM Build Instructions contains instructions for building AtomVM for Generic UNIX, ESP32, and STM32 platforms.

Contributing

The AtomVM community welcomes contributions to the AtomVM code base and upstream and downstream projects. Please see the contributing guidelines for information about how to contribute.

AtomVM developers can be reached on the #AtomVM discord server (rarely used) or on Telegram at AtomVM - Erlang and Elixir on Microcontrollers (this is where we are most active).

Where to go from here

The following guides provide more detailed information about getting started with the AtomVM virtual machine, how to develop and deploy applications, and implementation information, for anyone interested in getting more involved:

	Getting Started Guide

	Programmers Guide

	Example Programs

	Build Instructions

Release Notes

Welcome to AtomVM 0.6.5

These release notes provide version information about the current release of AtomVM.

See also

For a detailed list of changes since the last release consult the Changelog.

Required Software

The following software is required to develop Erlang or Elixir applications on AtomVM:

	An Erlang/OTP compiler (erlc)

	The Elixir runtime, if developing Elixir applications.

	(recommended) For Erlang programs, rebar3

	(recommended) For Elixir programs, mix, which ships with the Elixir runtime.

AtomVM will run BEAM files that have been compiled using the following Erlang and Elixir versions:

	Erlang Version

	Elixir Version

	✅ OTP 21

	✅ 1.7

	✅ OTP 22

	✅ 1.8

	✅ OTP 23

	✅ 1.11

	✅ OTP 24

	✅ 1.14

	✅ OTP 25

	✅ 1.14

	✅ OTP 26

	✅ 1.15

Note

Versions of Elixir that are compatible with a particular OTP version may work. This table reflects the versions that are tested.

Not all BEAM instructions are supported for every Erlang and Elixir compiler. For details about which instructions are supported, see the src/libAtomVM/opcodes.h header file in the AtomVM github repository corresponding to the current release.

For detailed information about features and bug fixes in the current release, see the AtomVM Change Log. For information about how to update from previous versions of AtomVM, see the AtomVM Updating page.

ESP32 Support

AtomVM supports deployment on the Espressif ESP32 family of architectures.

To run applications built for AtomVM on the ESP32 platform you will need:

	The esptool program, for flashing the AtomVM image and AtomVM programs to ESP32 MCUs.

	A serial console program, such as minicom or screen, so that you can view console output from your AtomVM application.

AtomVM currently supports the following Espressif ESP SoCs:

	Espressif SoCs

	AtomVM support

	ESP32

	✅

	ESP32c2

	✅

	ESP32c3

	✅

	ESP32c6

	✅

	ESP32h2

	✅

	ESP32s2

	✅

	ESP32s3

	✅

AtomVM currently supports the following versions of ESP-IDF:

	IDF SDK supported versions

	AtomVM support

	ESP-IDF v5.0

	✅

	ESP-IDF v5.1

	✅

	ESP-IDF v5.2

	✅

	ESP-IDF v5.3

	✅

Building the AtomVM virtual machine for ESP32 is optional. In most cases, you can simply download a release image from the AtomVM release repository. If you wish to work on development of the VM or use one on the additional drivers that are available in the AtomVM repositories you will to build AtomVM from source. See the Build Instructions for information about how to build AtomVM from source code. We recommend you to use the latest subminor (patch) versions for source builds. You can check the current version used for testing in the esp32-build.yaml workflow.

STM32 Support

AtomVM supports deployment on the STMicroelectronics STM32 architecture.

AtomVM has been tested on the following development boards:

	STM32 Development Boards

	AtomVM support

	Nucleo-F429ZI

	✅

	STM32F4Discovery

	✅

	BlackPill V2.0

	✅

Due to the proliferation of boards for the STMicroelectronics STM32 platform, AtomVM does not currently support pre-build binaries for STM32. In order to deploy AtomVM to the STM32 platform, you will need to build AtomVM for STM32 from source. See the Build Instructions for information about how to build AtomVM from source code.

Note

AtomVM tests this build on the latest Ubuntu github runner.

Raspberry Pi Pico Support

AtomVM supports deployment on the Raspberry Pico RP2040 architecture.

AtomVM currently supports the following Raspberry Pico development boards:

	Development Board

	AtomVM support

	Raspberry Pico and Pico H

	✅

	Raspberry Pico W and Pico WH

	✅

Building the AtomVM virtual machine for Raspberry Pico is optional. In most cases, you can simply download a release image from the AtomVM release repository. If you wish to work on development of the VM or use one on the additional drivers that are available in the AtomVM repositories you will to build AtomVM from source. See the Build Instructions for information about how to build AtomVM from source code.

Getting Started Guide

Welcome to the AtomVM Getting Started Guide. This document is intended to get you started so that you can run Erlang or Elixir programs on the AtomVM platform as quickly as possible.

In order to do so, you will need to provision your device (depending on the device type) with the AtomVM virtual machine. Typically, you only need to do this once (or at least once per release of the VM you would like to use). Once the VM is provisioned on the device, you can then deploy your application onto the device, and we expect this process to your typical “deploy, test, debug” development lifecycle. The subsequent chapter on AtomVM Tooling will help you understand that process.

The getting started is broken up into the following sections:

	Getting Started on the ESP32 platform

	Getting Started on the STM32 platform

	Getting Started on the Raspberry Pi Pico platform

	Getting Started on the Generic UNIX platform

	Getting Started with AtomVM WebAssembly

Please use the appropriate section for the device type you intend to use.

Getting Started on the ESP32 platform

The AtomVM virtual machine is supported on the Espressif ESP32 platform, allowing users to write Erlang and Elixir programs and deploy them to the ESP32 micro-controller. For specific information about which ESP32 boards and chip-sets are supported, please refer to the AtomVM Release Notes.

These instructions cover how to provision the AtomVM virtual machine flashed to your ESP32 device.

For most applications, you should only need to install the VM once (or at least once per desired AtomVM release). Once the VM is uploaded, you can then begin development of Erlang or Elixir applications, which can then be flashed as part of your routine development cycle.

ESP32 Requirements

Deployment of AtomVM on the ESP32 platform requires the following components:

	A computer running MacOS or Linux (Windows support is not currently supported);

	An ESP32 (including ESP32-S2, ESP32-S3, ESP32-C2, ESP32-C3, ESP32-C6, ESP32-H2) module with a USB/UART connector (typically part of an ESP32 development board);

	A USB cable capable of connecting the ESP32 module or board to your development machine (laptop or PC);

	The esptool program, for flashing the AtomVM image and AtomVM programs;

	An Erlang/OTP;

	A serial console program, such as minicom or screen, so that you can view console output from your AtomVM application.

	(recommended) For Erlang programs, rebar3;

	(recommended) For Elixir programs, mix, which ships with the Elixir runtime;

See also

For information about specific versions of required software, see the AtomVM Release Notes.

ESP32 Deployment Overview

The ES32 AtomVM virtual machine is an IDF application that runs on the ESP32 platform. As an IDF application, it provides the object code to boot the ESP device and execute the AtomVM virtual machine code, which in turn is responsible for execution of an Erlang/Elixir application.

The AtomVM virtual machine is implemented in C, and the AtomVM binary image contains the binary object code compiled from C source files, as well as the ESP boot loader and partition map, which tells the ESP32 how the flash module is laid out.

AtomVM developers will typically write their applications in Erlang or Elixir. These source files are compiled into BEAM bytecode, which is then assembled into AtomVM “packbeam” (.avm) files. This packbeam file is flashed onto the ESP32 device, starting at the data partition address 0x210000. When AtomVM starts, it will look in this partition for the first occurrence of a BEAM module that exports a start/0 function. Once that module is located, execution of the BEAM bytecode will commence at that point.

The following diagram provides a simplified overview of the layout of the AtomVM virtual machine and Erlang/Elixir applications on the ESP32 flash module.

| |
+---------------+ ----------- 0x1000
| boot loader | ^
+---------------+ |
| partition map | | AtomVM
+---------------+ | binary
| | | image
AtomVM	
Virtual	
Machine	
	v
+---------------+ ----------- 0x210000	
	^
data	
partition	
	v
+---------------+ ----------- end

Deploying an AtomVM application to an ESP32 device typically involved two steps:

	Connecting the ESP32 device;

	Deploying the AtomVM virtual machine;

	Deploying an AtomVM application (typically an iterative process)

These steps are described in more detail below.

Connecting the ESP32 device

Connect the ESP32 to your development machine (e.g., laptop or PC) via a USB cable.

+---------------+
| laptop or PC |
| | +-------+
| | USB | |
| x-----------x |
| | | |
| | +-------+
+---------------+ ESP32

Important

There are a wide variety of ESP32 modules, ranging from home-made breadboard solutions to all-in-one development
boards. For simplicity, we assume a development board that can both be powered by a USB cable and which can be
simultaneously flashed using the same cable, e.g., the
Espressif ESP32 DevKit.

Consult your local development board documentation for instructions about how to connect your device to your development machine.

Deploying the ESP32 AtomVM virtual machine

The following methods can be used to deploy the AtomVM virtual machine to an ESP32 device:

	Flashing a binary image;

	Building from source.

Flashing a binary image to ESP32

Flashing the ESP32 using a pre-built binary image is by far the easiest path to getting started with development on the ESP32. Binary images contain the virtual machine image and all of the necessary components to run your application.

We recommend first erasing any existing applications on the ESP32 device. E.g.,

$ esptool.py --chip auto --port /dev/ttyUSB0 --baud 921600 erase_flash

Note

Specify the device port and baud settings and AtomVM image name to suit your particular environment. A baud rate of 921600 works well for most ESP32 devices, some can work reliably at higher rates of 1500000, or even 2000000, but some devices (especially those with a 26Mhz crystal frequency, rather than the more common 40 Mhz crystal) may need to use a slower baud rate such as 115200.

Download the latest release image for ESP32.

This image will generally take the form:

Atomvm-<esp32-soc>-<atomvm-version>.img

For example:

Atomvm-esp32-v0.6.0.img

You will also find the sha256 hash for this file, which you should verify using the sha256sum command on your local operating system.

Warning

Alpha and Beta images may be unstable and may result in unpredictable behavior. You can help solve these bugs by
opening a detailed issue on GitHub, if you encounter such problems.

Finally, use the esptool.py command to flash the image to the bootloader start address 0x1000 on the ESP32. E.g.,

$ esptool.py \
--chip auto \
--port /dev/ttyUSB0 --baud 921600 \
--before default_reset --after hard_reset \
write_flash -u \
--flash_mode dio --flash_freq 40m --flash_size detect \
0x1000 \
/path/to/Atomvm-esp32-v0.6.0.img

Attention

A baud rate of 921600 works well for most ESP32 devices, some can work reliably at higher rates of 1500000, or even
2000000, but some devices (especially those with a 26Mhz crystal frequency, rather than the more common 40 Mhz
crystal) may need to use a slower baud rate such as 115200.

The chart below lists the bootloader offset for the various ESP32 family of chips:

	Chipset

	Bootloader offset

	ESP32

	0x1000

	ESP32-S2

	0x1000

	ESP32-S3

	0x0

	ESP32-C2

	0x0

	ESP32-C3

	0x0

	ESP32-C6

	0x0

	ESP32-H2

	0x0

Once completed, your ESP32 device is ready to run Erlang or Elixir programs targeted for AtomVM.

Building for ESP32 from source

You may optionally build AtomVM from source and deploy the AtomVM virtual machine to your ESP32 device manually. Building AtomVM from source is slightly more involved, as it requires the installation of the Espressif IDF SDK and tool chain and is typically recommended only for users who are doing development on the AtomVM virtual machine, or for developers implementing custom Nifs or ports.

Instructions for building AtomVM from source are covered in the AtomVM Build Instructions

Deploying an AtomVM application for ESP32

An AtomVM application is a collection of BEAM files, which have been compiled using the Erlang or Elixir compiler. These BEAM files are assembled into an AtomVM “packbeam” (.avm) file, which in turn is flashed to the main data partition on the ESP32 flash module, starting at address 0x210000.

When the AtomVM virtual machine starts, it will search for the first module that contains an exported start/0 function in this partition, and it will begin execution of the BEAM bytecode at that function.

AtomVM applications can be written in Erlang or Elixir, or a combination of both. The AtomVM community has provided tooling for both platforms, making deployment of AtomVM applications as seamless as possible.

For information about how to flash your application to your ESP32, see the AtomVM Tooling chapter.

Getting Started on the STM32 platform

AtomVM can run on a wide variety of STM32 chip-sets available from STMicroelectronics. The support is not nearly as mature as for the ESP32 platform, but work is ongoing, and pull requests are always welcome. At this time AtomVM will work on any board with a minimum of around 128KB ram and 512KB (1M recommended) flash. Simple applications and tests have been successfully run on a stm32f411ceu6 (A.K.A. Black Pill V2). These minimum requirements may need to be raised as platform support matures.

STM32 Requirements

Deployment of AtomVM on the STM32 platform requires the following components:

	A computer running MacOS or Linux (Windows is not currently supported);

	An stm32 board and a USB/UART connector (these are built into some boards such as the Nucleo product line) and a minimum of 512k (1M recommended) of flash and a recommended minimum of 100k RAM;

	A USB cable capable of connecting the STM32 module or board to your development machine (laptop or PC);

	st-flash via stlink, to flash both AtomVM and your packed AVM applications. Make sure to follow its installation procedure before proceeding further.

	A st-link v2 or st-link v3 device (typically already included on Nucleo and Discovery boards), is needed for flashing and optional jtag debugging.

	A serial console program, such as minicom or screen, so that you can view console output from your AtomVM application.

	(recommended) For Erlang programs, rebar3;

	(recommended) For Elixir programs, mix, which ships with the Elixir runtime;

Deploying the STM32 AtomVM virtual machine

The following methods can be used to deploy the AtomVM virtual machine to an STM32 device:

	Building from source.

Attention

Due to the very large number of supported chip-sets and the wide variety of board configurations, and the code
changes required to support them, pre-built binaries for the stm32 platform are not currently available.

Consult the STM32 Build Instructions to create a binary compatible with your board.

Flashing a binary image to STM32

Once you have created an STM32 binary image, you can flash the image to your STM32 device using the st-flash application.

To flash your image, use the following command:

$ st-flash --reset write AtomVM-stm32f407vgt6.bin 0x8000000

Congratulations! You have now flashed the AtomVM VM image onto your STM32 device!

Important

AtomVM expects to find the AVM at the address 0x8080000. On a STM32 Discovery board this means that the 1MB of flash
will be split in 512KB available for the program and 512KB available for the packed AVM. For devices with only 512KB
of flash the application address is 0x8060000, leaving 128KB of application flash available.

Console Printing

By default, stdout and stderr are printed on USART2. On the STM32F4Discovery board, you can see them using a TTL-USB with the TX pin connected to board’s pin PA2 (USART2 RX). Baudrate is 115200 and serial transmission is 8N1 with no flow control.

For Nucleo boards the on board USB-COM to USART may be used by configuring your build with a BOARD parameter, see the STM32 Build Instructions for Configuring the Console.

Deploying an AtomVM application for STM32

An AtomVM application is a collection of BEAM files, which have been compiled using the Erlang or Elixir compiler. These BEAM files are assembled into an AtomVM “packbeam” (.avm) file, which in turn is flashed to the main data partition on the STM32 flash module, starting at address 0x8080000, for boards with 512KB of flash the address is 0x8060000.

When the AtomVM virtual machine starts, it will search for the first module that contains an exported start/0 function in this partition, and it will begin execution of the BEAM bytecode at that function.

AtomVM applications can be written in Erlang or Elixir, or a combination of both. The AtomVM community has provided tooling for both platforms, making deployment of AtomVM applications as seamless as possible.

For information about how to flash your application to your STM32, see the AtomVM Tooling chapter.

Getting Started on the Raspberry Pi Pico platform

AtomVM supports deployment of the VM and applications onto the Raspberry Pi Pico platform. For information about supported boards, please refer to the AtomVM Release Notes.

The following instructions show you how to install the AtomVM onto one of the Raspberry Pi Pico boards.

Pico Requirements

Deployment of AtomVM on the Raspberry Pico platform requires the following components:

	A computer running MacOS or Linux (Windows support is not currently supported);

	A Raspberry Pico board with a USB/UART connector (typically part of a development board);

	A USB cable capable of connecting the Raspberry Pico module or board to your development machine (laptop or PC);

	A serial console program, such as minicom or screen, so that you can view console output from your AtomVM application.

	(recommended) For Erlang programs, rebar3;

	(recommended) For Elixir programs, mix, which ships with the Elixir runtime;

	(recommended) picotool, useful for resetting the device into BOOTSEL or application mode, optionally used by the atomvm_rebar3_plugin (if available in env $PATH) for disconnecting active screen sessions when attempting to flash when still connected.

Deploying the Pico AtomVM virtual machine

The following methods can be used to deploy the AtomVM virtual machine to a Raspberry Pico device:

	Flashing a binary image;

	Building from source.

Flashing a binary image to Pico

Flashing the Raspberry Pico using a pre-built binary image is by far the easiest path to getting started with development on the Raspberry Pico. Binary images contain the virtual machine image and all of the necessary components to run your application.

Download the latest release image for Raspberry Pico.

This image will generally take the form:

Atomvm-<raspberry-pico-soc>-<atomvm-version>.uf2

For example:

Atomvm-pico-v0.6.0.uf2

You will also find the sha256 hash for this file, which you should verify using the sha256sum command on your local operating system.

You will also need a copy of the AtomVM core libraries, which include all of the compiled Erlang and Elixir needed to run parts of the VM.

This library will generally take the form:

atomvmlib-<atomvm-version>.uf2

For example:

atomvmlib-v0.6.0.uf2

You will also find the sha256 hash for this file, which you should verify using the sha256sum command on your local operating system.

To flash your Raspberry Pico, you will need to undertake a few steps that interact with your operating file system.

Important

It is important that you downloads the .uf2 versions of these files for the Raspberry Pico platform.

For each of the above files, you will start your Raspberry Pico in bootloader mode by pressing the BOOTSEL button on the Raspberry Pico dev board, while powering on the device. Doing so will automatically boot the device and mount the Raspberry Pico on to your file system as a USB device.

You can then use normal operating system commands (such as cp, or even drag-and-drop) to copy the above files to the mounted USB volume.

Note, however, that in general the USB device will auto-unmount after each file has been copied, so you will need to repeat the procedure for each of the above two files.

On most Linux systems, the Raspberry Pico will be mounted at /run/media/${USER}/RPI-RP2.

On macOS system, the Raspberry Pico will be mounted at /Volumes/RPI-RP2.

For example:

Power on Raspberry Pico with BOOTSEL button pressed

$ ls -l /Volumes/RPI-RP2
total 16
-rwxrwxrwx 1 joe staff 241 Sep 5 2008 INDEX.HTM*
-rwxrwxrwx 1 joe staff 62 Sep 5 2008 INFO_UF2.TXT*

$ cp ~/Downloads/AtomVM-pico-v0.6.0.uf2 /Volumes/RPI-RP2/.

… at this point, the device will auto-unmount.

And again for the AtomVM core library (note that previously flashed .uf2 files have disappeared):

Power on Raspberry Pico with BOOTSEL button pressed

$ ls -l /Volumes/RPI-RP2
total 16
-rwxrwxrwx 1 joe staff 241 Sep 5 2008 INDEX.HTM*
-rwxrwxrwx 1 joe staff 62 Sep 5 2008 INFO_UF2.TXT*

$ cp ~/Downloads/atomvmlib-v0.6.0.uf2 /Volumes/RPI-RP2/.

… and again, at this point, the device will auto-unmount.

Potential Issues with macOS

There are known issues copying files to the Pico using macOS, and a lot of literature online. Usually it’s best to use the Terminal rather than the Finder because the errors are more explicit.
Copying may also fail with UF2 files downloaded from the Internet, typically AtomVM release binaries.

$ cp ~/Downloads/AtomVM-pico_w-v0.6.0.uf2 /Volumes/RPI-RP2/.
cp: /Volumes/RPI-RP2/AtomVM-pico-v0.6.0.uf2: fcopyfile failed: Operation not permitted
cp: /Users/joe/Downloads/AtomVM-pico-v0.6.0.uf2: could not copy extended attributes to
/Volumes/RPI-RP2/AtomVM-pico-v0.6.0.uf2: Operation not permitted

Two issues appear here: one is macOS tries to copy extended attributes and this fails (but this error is not a blocker), and the other is the “Operation not permitted” because the file is quarantined, having been downloaded from the web.

First issue can be solved with cp -x if you don’t tolerate the error message and second with xattr -d.

$ xattr -d com.apple.quarantine ~/Downloads/AtomVM-pico_w-v0.6.0.uf2
$ cp -x ~/Downloads/AtomVM-pico_w-v0.6.0.uf2 /Volumes/RPI-RP2/.
$

Deploying an AtomVM application for Generic Unix

An AtomVM application is a collection of BEAM files, which have been compiled using the Erlang or Elixir compiler. These BEAM files are assembled into an AtomVM “packbeam” (.avm) file, which in turn can be provided to the atomvm executable on the command line.

When the AtomVM virtual machine starts, it will search for the first module that contains an exported start/0 function in this partition, and it will begin execution of the BEAM bytecode at that function.

AtomVM applications can be written in Erlang or Elixir, or a combination of both. The AtomVM community has provided tooling for both platforms, making deployment of AtomVM applications as seamless as possible.

For information about how to flash your application to your Raspberry Pico, see the AtomVM Tooling chapter.

Getting Started on the Generic UNIX platform

The AtomVM virtual machine is supported a wide variety of Generic UNIX platforms, including many Linux kernels and target architectures, FreeBSD, and MacOS, allowing users to write Erlang and Elixir programs and run them on a local development machine. For specific information about which Generic UNIX versions and architectures are supported, please refer to the AtomVM Release Notes.

These instructions cover how to provision the AtomVM virtual machine onto your development machine. Running applications locally can sometimes be a useful exercise in debugging.

Caution

Not all programming interfaces are supported on all platforms. See the AtomVM
Programmers Guide for more information.

For most applications, you should only need to install the VM once (or at least once per desired AtomVM release). Once the VM is installed, you can then begin development of Erlang or Elixir applications, which can then be flashed as part of your routine development cycle.

Generic UNIX Requirements

Deployment of AtomVM on the Generic UNIX platform requires the following components:

	A computer running MacOS or Linux (Windows support is not currently supported);

	An Erlang/OTP and compatible Elixir runtime;

	(recommended) For Erlang programs, rebar3;

	(recommended) For Elixir programs, mix, which ships with the Elixir runtime;

For information about specific versions of required software, see the AtomVM Release Notes.

Installing the AtomVM virtual machine

The following methods can be used to install the AtomVM virtual machine on the Generic UNIX platform:

	Download Linux Binaries

	(MacOS only) Installing via macports or Homebrew;

	Building from source.

Installation on Linux Platforms

Downloading a pre-built binary image for Linux is by far the easiest path to getting started with development on a Linux development machine. Binary images contain the virtual machine.

Download the latest release image for Linux.

This image will generally take the form:

Atomvm-linux-<arch>-<atomvm-version>

where <arch> is the target architecture.

For example:

Atomvm-linux-x86_64-v0.6.0

You will also find the sha256 hash for this file, which you should verify using the sha256sum command on your local operating system.

You will also need a copy of the AtomVM core libraries, which include all of the compiled Erlang and Elixir needed to run parts of the VM.

This library will generally take the form:

atomvmlib-<atomvm-version>.avm

For example:

atomvmlib-v0.6.0.avm

You will also find the sha256 hash for this file, which you should verify using the sha256sum command on your local operating system.

See also

See below for instructions about how to run the AtomVM
binary, together with the AtomVM core libraries on the command line.

Installation on MacOS

You can install AtomVM for Generic UNIX using macports or Homebrew. This instructions assume you are familiar with these package managers.

To install via macports:

$ sudo port install atomvm

Once installed, the atomvm executable should be available in your $PATH environment variable.

$ which atomvm
/opt/local/bin/atomvm

To install via Homebrew, you will first need to install the atomvm Homebrew Tap:

$ brew tap atomvm/atomvm

This command will make the atomvm Homebrew formula available to you.

$ brew install atomvm

Once installed, the atomvm executable should be available in your $PATH environment variable.

$ which atomvm
/usr/local/bin/atomvm

Building on MacOS from source

You may optionally build AtomVM from source and install the AtomVM virtual machine to your development machine. Building AtomVM from source is slightly more involved, as it requires the installation of third party libraries and is typically recommended only for users who are doing development on the AtomVM virtual machine, or for developers implementing custom Nifs or ports.

Instructions for building AtomVM from source are covered in the AtomVM Build Instructions.

Running applications on the Generic UNIX platform

AtomVM may be run on UNIX-like platforms using the atomvm command.

You may specify one or more AVM files on the command line when running the atomvm command. BEAM modules defined in earlier AVM modules on the command line take higher precedence that BEAM modules included in AVM files later in the argument list.

$ atomvm /path/to/myapp.avm

To get the current version of AtomVM, use the -v option, e.g.:

$ atomvm -v
0.6.0

Use the -h option to get command line help:

$ atomvm -h

Syntax:

 /usr/local/lib/atomvm/AtomVM [-h] [-v] <path-to-avm-file>+

Options:

 -h Print this help and exit.
 -v Print the AtomVM version and exit.

Supply one or more AtomVM packbeam (.avm) files to start your application.

Example:

 $ /usr/local/lib/atomvm/AtomVM /path/to/my/application.avm /path/to/atomvmlib.avm

Getting Started with AtomVM WebAssembly

You can run AtomVM for WebAssembly with NodeJS or within common browsers (Safari, Chrome and Chrome-based, Firefox).

Getting Started with AtomVM WebAssembly port for NodeJS

Download the latest release image for Node.

This image will generally take the form:

Atomvm-node-<atomvm-version>.js

For example:

Atomvm-node-v0.6.0.js

You will also find the sha256 hash for this file, which you should verify using the sha256sum command on your local operating system.

AtomVM’s WebAssembly port for NodeJS may be run using node command and AtomVM.js, AtomVM.worker.js and AtomVM.wasm files.

$ node /path/to/Atomvm-node-v0.6.0.js /path/to/myapp.avm

Getting Started with AtomVM WebAssembly port for browsers

AtomVM may also be run in modern browsers (Safari, Chrome and Chrome-based, Firefox) using AtomVM.js, AtomVM.worker.js and AtomVM.wasm files.

Please note that these files are different from the NodeJS ones.

Because AtomVM uses SharedArrayBuffer, to be executed by a browser, these files need to be served:

	on localhost or over HTTPS

	by a web server that also sends Cross-Origin-Opener-Policy and Cross-Origin-Embedder-Policy headers. These headers are also called COOP and COEP headers.

These security requirements are documented in Mozilla’s documentation.

Trying locally from AtomVM source tree

If you compile AtomVM for Unix as well as for Node as explained in the build instructions, you can use an AtomVM-based toy webserver to serve the WebAssembly examples with:

$./src/AtomVM examples/emscripten/wasm_webserver.avm

This web server serves HTML files from examples/emscripten/. It works without HTTPS because files are served on localhost.

Using a hosting service with a _headers file

You can also host the three files on a hosting service such as Netlify that uses _headers files.

The file could have the following content:

/*
Cross-Origin-Opener-Policy: same-origin
Cross-Origin-Embedder-Policy: require-corp

Using web server such as Nginx

You can also host the three files on web server such as Nginx or Apache.

The configuration for Nginx would be:

server {
 add_header Cross-Origin-Opener-Policy "same-origin";
 add_header Cross-Origin-Embedder-Policy "require-corp";
 location / {
 ...
 }
}

Using Javascript service worker trick

If you have no possibility to modify the headers, for example with GitHub pages, you can still get AtomVM to run in the browser using a Javascript service worker trick.

We did successfully use coi-serviceworker.

Where to go from here

The following resources may be useful for understanding how to develop Erlang or Elixir applications for the AtomVM platform:

	AtomVM Tooling

	Example Programs

	Programmers Guide

AtomVM Tooling

AtomVM provides an implementation of the Erlang virtual machine, and as such it provides runtime support for applications targeted for the platform.

However, developers will typically make use of downstream tooling that simplifies the development and provisioning of applications onto devices that are running the on the virtual machine.

This chapter presents an overview of these tools and how they can be used to make you more productive as an AtomVM developer.

Two tools are supported, one for Erlang developers, and one for Elixir developers:

	For Erlang developers: atomvm_rebar3_plugin

	For Elixir developers: ExAtomVM

atomvm_rebar3_plugin

The atomvm_rebar3_plugin is a rebar3 plugin that can be used to create and flash Erlang applications that run over AtomVM. Using this plugin greatly simplifies the process of building Erlang applications that run over AtomVM, and is strongly encouraged for all users.

Prerequisites for atomvm_rebar3_plugin

To use the atomvm_rebar3_plugin, you will need the following software on your development machine:

	A suitable version of the Erlang/OTP distribution. See the Release Notes for information about supported Erlang/OTP versions.

	A recent version of the rebar3 command-line tool.

	(optional) The git command line tool, to follow examples in this chapter.

	For flashing to ESP32, the esptool program.

	For flashing to STM32, st-flash via stlink

	(optional) A serial console program such as minicom or screen, to view console output from a device.

	(recommended) For rp2040, picotool for software resets on Raspberry Pi Pico. (optionally used if found in PATH to disconnect active screen sessions, which normally prevent flashing)

Erlang Example Program

To see this plugin in action, we will clone the atomvm_examples Github repository, and build and run the most simple

$ git clone https://github.com/atomvm/atomvm_examples
...
$ cd atomvm_examples/erlang/hello_world

From this directory we will run various rebar3 targets in the steps below.

Creating an AtomVM AVM file with rebar3

To create an AtomVM packbeam file (ending in .avm), use the packbeam target in the atomvm namespace:

$ rebar3 atomvm packbeam
...
===> AVM file written to .../hello_world/_build/default/lib/hello_world.avm

See also

See the atomvm_rebar3_plugin page for more detailed instructions
about how to use the packbeam target.

Running applications on generic_unix

If you have installed AtomVM on a generic UNIX platform, you and run the example program directly using the atomvm command:

$ atomvm _build/default/lib/hello_world.avm
Hello World
Return value: ok

For instructions about how to install AtomVM on the generic_unix platform, see the Getting Started Guide

Flashing your application with rebar3

The atomvm_rebar3_plugin supports flash targets for various device types. These targets are described in more detail below.

ESP32

To flash AtomVM AVM file to an ESP32 device, use the esp32_flash target in the atomvm namespace. Users will typically specify the device port and baud rate as command-line options to this target.

Important

In order to use the esp32_flash target, you will need to install the
esptool program.

For example:

$ rebar3 atomvm esp32_flash --port /dev/ttyUSB0 --baud 921600
...
===> esptool.py --chip auto --port /dev/ttyUSB0 --baud 921600 --before default_reset
 --after hard_reset write_flash -u --flash_mode keep --flash_freq keep --flash_size detect
 0x210000 atomvm_examples/erlang/hello_world/_build/default/lib/hello_world.avm

Tip

A baud rate of 921600 works well for most ESP32 devices, some can work reliably at higher rates of 1500000, or even
2000000, but some devices (especially those with a 26Mhz crystal frequency, rather than the more common 40 Mhz
crystal) may need to use a slower baud rate such as 115200.

Note. A baud rate of 921600 works well for most ESP32 devices, some can work reliably at higher rates of 1500000, or even 2000000, but some devices (especially those with a 26Mhz crystal frequency, rather than the more common 40 Mhz crystal) may need to use a slower baud rate such as 115200.

See the atomvm_rebar3_plugin page for more detailed instructions about how to use the esp32_flash target.

You can now use a serial console program such as minicom or screen to view console output from a device.

 ###

 ### ######## ####### ## ## ## ## ## ##
 ## ## ## ## ## ### ### ## ## ### ###
 ## ## ## ## ## #### #### ## ## #### ####
 ## ## ## ## ## ## ### ## ## ## ## ### ##
 ######### ## ## ## ## ## ## ## ## ##
 ## ## ## ## ## ## ## ## ## ## ##
 ## ## ## ####### ## ## ### ## ##

 ###

I (852) AtomVM: Starting AtomVM revision 0.6.0-alpha.1
I (862) sys: Loaded BEAM partition boot.avm at address 0x1d0000 (size=262144 bytes)
I (882) network_driver: Initialized network interface
I (882) network_driver: Created default event loop
I (902) AtomVM: Found startup beam esp32init.beam
I (922) AtomVM: Starting esp32init.beam...

AtomVM init.
I (932) sys: Loaded BEAM partition main.avm at address 0x210000 (size=1048576
bytes)
Starting application...
Hello World
AtomVM finished with return value: ok
I (972) AtomVM: AtomVM application terminated. Going to sleep forever ...

STM32

To flash AtomVM AVM file to an STM32 device, use the stm32_flash target in the atomvm namespace.

Important

In order to use the stm32_flash target, you will need to install the st-flash tool from the open source (bsd-3
licensed)stlink suite of stm32 utilities.

Since the AtomVM core libraries are not flashed to an STM32 device, you will need to include is library in your application. As part of the build process for the STM32, you will have built the AtomVM core libraries into a file named atomvmlib.avm

Danger

It is critical that the version of the AtomVM core libraries match the version of the AtomVM virtual machine you
built as part of the STM32 build. Be sure to use the version of this library (written to build/lib/atomvmlib.avm
during the build process). For more information about how to build AtomVM for the STM32 platform, see the AtomVM
Build Instructions.

In general, it is also a good idea to use the prune option when creating your application’s AVM file. This way, only the modules that are needed for your application will be included, which will decrease the size of your application’s AVM file, leading to faster development times.

Edit the rebar.config so that it includes the following atomvm_rebar3_plugin stanza, if it does not already.

{atomvm_rebar3_plugin, [
 {packbeam, [prune]}
]}.

This stanza will guarantee that the generated packbeam file will be pruned when created.

You will need to first build a packbeam file that includes the AtomVM core libraries. Use the packbeam task in the atomvm namespace, and specify the path to the atomvmlib.avm file you created as part of the build.

$ rebar3 atomvm packbeam -e /path/to/atomvmlib.avm

You may now flash your application to your STM32 device:

$ rebar3 atomvm stm32_flash
...
===> st-flash --reset write _build/default/lib/hello_world.avm 0x8080000

For devices with only 512KB of flash the application address is different and must be specified:

$ rebar3 atomvm stm32_flash -o 0x8060000
...
===> st-flash --reset write _build/default/lib/hello_world.avm 0x8060000

See the atomvm_rebar3_plugin page for more detailed instructions about how to use the stm32_flash target.

You can now use a serial console program such as minicom or screen to view console output from a device.

 ###

 ### ######## ####### ## ## ## ## ## ##
 ## ## ## ## ## ### ### ## ## ### ###
 ## ## ## ## ## #### #### ## ## #### ####
 ## ## ## ## ## ## ### ## ## ## ## ### ##
 ######### ## ## ## ## ## ## ## ## ##
 ## ## ## ## ## ## ## ## ## ## ##
 ## ## ## ####### ## ## ### ## ##

 ###

INFO [51] AtomVM: Starting AtomVM revision 0.6.0-alpha.2+git.59e25c34
INFO [58] AtomVM: Booting file mapped at: 0x8080000, size: 444
INFO [64] AtomVM: Starting: hello_world.beam...

Hello World
INFO [74] AtomVM: Exited with return: ok
INFO [78] AtomVM: AtomVM application terminated. Going to sleep forever ...

Raspberry Pico

To generate a Raspberry Pico uf2 file from an AtomVM AVM file and flash it to an rp2040 device, use the pico_flash target in the atomvm namespace.

For example:

$ rebar3 atomvm pico_flash
...
===> AVM file written to _build/default/lib/hello_world.avm
===> Resetting device at path /dev/ttyACM0
===> Waiting for the device at path /run/media/${USER}/RPI-RP2 to settle and mount...
===> Copying atomvm_examples/erlang/hello_world/_build/default/lib/hello.uf2 to
 /run/media/${USER}/RPI-RP2...

See the atomvm_rebar3_plugin page for more detailed instructions about how to use the pico_flash target.

You can now use a serial console program such as minicom or screen to view console output from a device. The default build will wait 20 seconds for a serial connection to be established before starting the application.

 ###

 ### ######## ####### ## ## ## ## ## ##
 ## ## ## ## ## ### ### ## ## ### ###
 ## ## ## ## ## #### #### ## ## #### ####
 ## ## ## ## ## ## ### ## ## ## ## ### ##
 ######### ## ## ## ## ## ## ## ## ##
 ## ## ## ## ## ## ## ## ## ## ##
 ## ## ## ####### ## ## ### ## ##

 ###

Starting AtomVM revision 0.6.0-alpha.2+git.59e25c34
Found startup beam hello_world.beam
Starting hello_world.beam...

Hello World
AtomVM finished with return value: ok
AtomVM application terminated. Going to sleep forever ...

If no connection is made before the timeout is reached the application will start, but the uart console will not be available. At this point you can use picotool to reboot the device into application mode.

Example:

$ picotool reboot -f
The device was asked to reboot into application mode.

$

This will again give you 20 seconds to establish a serial monitor connection. For information about changing this timeout, or locking down the device so that software resets no longer work (requiring that the device be power cycled and the BOOTSEL button help when powering on to flash) consult the rp2040 section of the Build Instructions.

ExAtomVM

The ExAtomVM tool is a mix plugin that can be used to create and flash Elixir applications that run over AtomVM. Using this plugin greatly simplifies the process of building Elixir applications that run over AtomVM, and is strongly encouraged for new users.

Prerequisites for ExAtomVM

To use the ExAtomVM tool, you will need the following software on your development machine:

	A suitable version of the Erlang/OTP distribution. See the Release Notes for information about supported Erlang/OTP versions.

	A suitable version of the Elixir distribution. See the Release Notes for information about supported Elixir versions.

	(optional) The git command line tool, to follow examples in this chapter.

	For flashing to ESP32, the esptool program.

	(optional) A serial console program such as minicom or screen, to view console output from a device.

Elixir Example Program

To see this plugin in action, we will clone the atomvm_examples Github repository, and build and run the most simple

$ git clone https://github.com/atomvm/atomvm_examples
...
$ cd atomvm_examples/elixir/HelloWorld

From this directory we will run various mix targets in the steps below.

Creating an AtomVM AVM file with mix

To create an AtomVM packbeam file (ending in .avm), first use the mix.deps target to mix in order to download any dependencies:

$ mix deps.get
* Updating exatomvm (https://github.com/atomvm/ExAtomVM/)
remote: Enumerating objects: 17, done.
remote: Counting objects: 100% (17/17), done.
remote: Compressing objects: 100% (10/10), done.
remote: Total 17 (delta 6), reused 16 (delta 6), pack-reused 0
origin/HEAD set to main

You can now use the atomvm.packbeam target to create a packbeam (ending in .avm) file:

$ mix atomvm.packbeam
==> exatomvm
Compiling 5 files (.ex)
Generated exatomvm app
==> HelloWorld
Compiling 1 file (.ex)
Generated HelloWorld app
No avm_deps directory found.
This message can be safely ignored when standard libraries are already flashed to lib
partition.

The HelloWorld.avm is located in the top level directory:

$ ls -l HelloWorld.avm
-rw-rw-r-- 1 user wheel 19120 Oct 13 14:06 HelloWorld.avm

See also

See the ExAtomVM page for more detailed instructions about how to use the
atomvm.packbeam target.

Running on the generic_unix platform

If you have installed AtomVM on a generic UNIX platform, you and run the example program directly using the atomvm command:

$ atomvm HelloWorld.avm
Hello World
Return value: ok

For instructions about how to install AtomVM on the generic_unix platform, see the Getting Started Guide

Flashing your application with mix

The ExAtomVM plugin supports flash targets for various device types. These targets are described in more detail below.

Attention

Currently, the ExAtomVM tool only supports flash targets for the ESP32 and
STM32 platforms.

ESP32 flash task

To flash AtomVM packbeam file to an ESP32 device, use the mix.esp32.flash target. Users will typically specify the device port and baud rate as command-line options to this target.

Important

In order to use the mix.esp32.flash target, you will need to install the esptool program.

For example:

$ mix atomvm.esp32.flash --port /dev/ttyUSB0 --baud 921600

Tip

A baud rate of 921600 works well for most ESP32 devices, some can work reliably at higher rates of 1500000, or even
2000000, but some devices (especially those with a 26Mhz crystal frequency, rather than the more common 40 Mhz
crystal) may need to use a slower baud rate such as 115200.

Note. A baud rate of 921600 works well for most ESP32 devices, some can work reliably at higher rates of 1500000, or even 2000000, but some devices (especially those with a 26Mhz crystal frequency, rather than the more common 40 Mhz crystal) may need to use a slower baud rate such as 115200.

See the ExAtomVM page for more detailed instructions about how to use the mix.esp32.flash target.

You can now use a serial console program such as minicom or screen to view console output from a device.

 ###

 ### ######## ####### ## ## ## ## ## ##
 ## ## ## ## ## ### ### ## ## ### ###
 ## ## ## ## ## #### #### ## ## #### ####
 ## ## ## ## ## ## ### ## ## ## ## ### ##
 ######### ## ## ## ## ## ## ## ## ##
 ## ## ## ## ## ## ## ## ## ## ##
 ## ## ## ####### ## ## ### ## ##

 ###

I (852) AtomVM: Starting AtomVM revision 0.6.0-alpha.1
I (862) sys: Loaded BEAM partition boot.avm at address 0x1d0000 (size=262144 bytes)
I (882) network_driver: Initialized network interface
I (882) network_driver: Created default event loop
I (902) AtomVM: Found startup beam esp32init.beam
W (902) sys: AVM partition not found for lib.avm
I (902) AtomVM: Unable to mount lib.avm partition. Hopefully the AtomVM core libraries
are included in your application.
I (922) AtomVM: Starting esp32init.beam...

AtomVM init.
I (932) sys: Loaded BEAM partition main.avm at address 0x210000 (size=1048576 bytes)
Starting application...
Hello World
AtomVM finished with return value: ok
I (972) AtomVM: AtomVM application terminated. Going to sleep forever ...

STM32 flash task

To flash AtomVM packbeam file to an STM32 device, use the atomvm.stm32.flash mix target.

Important

In order to use the mix.stm32.flash target, you will need to install the st-flash tool from the open source
(bsd-3 licensed) stlink suite of stm32 utilities.

For example:

$ mix atomvm.stm32.flash

Most devices do not need to enter the default application offset 0x8080000, but devices with only 512KiB of flash storage need to use --flash_offset=0x8060000 parameter setting to upload the application to the correct flash location.

BlackPill V2 example:

$ mix atomvm.stm32.flash --flash_offset=0x8060000

If the st-flash tool is not in environment PATH, the full path to the st-flash tool should be exported to the environment variable ATOMVM_MIX_PLUGIN_STFLASH, for example:

$ export ATOMVM_MIX_PLUGIN_STFLASH=/opt/stlink/bin/st-flash

atomvm_packbeam

The atomvm_packbeam tool is a simple command-line utility that allows you to create, inspect, and manipulate AtomVM PackBEAM files. By convention, PackBEAM files end in the .avm suffix and are referred to as “AVM” files, in the remainder of this section.

Tip

Users generally do not have a need to use the packbeam tool directly. Instead, the functionality of this tool is
embedded in the atomvm_rebar3_plugin.

Installation

Consult the atomvm_packbeam Github page for instructions about how to install the atomvm_packbeam utility. Once installed, you should have the packbeam command line tool available in your PATH.

Usage

The packbeam command supports the following sub-commands:

	create Create an AVM file from a collection of files.

	list List the contents of an AVM file.

	extract Extract elements from an AVM file.

	delete Delete elements from an AVM file.

These sub-commands are described in more detail below.

See also

These notes provide only a high-level view of this packbeam utility. For more detailed information, see the
atomvm_packbeam Github repository.

Creating AVM files

To create an AVM from a list of existing files (typically .beam files), use the create subcommand. Specify the output .avm first, followed by a list of files you would like to include in the output file. E.g.,

$ packbeam create output.avm foo.beam bar.beam

Tip

Creation of AVM files is more typically done via the
atomvm_rebar3_plugin; however, the packbeam command can be used
to inspect and/or manipulate AVM files after they have been created by this plugin. This isn’t typically required,
but in some instances it can be useful.

Note that you can supply a previously created AVM file as an input to another creation, which will result in including all the files in the source AVM file in the destination.

$ packbeam create new_output.avm tapas.beam output.avm

You can also embed non-BEAM files in an AVM file. These files are accessible programmatically withing atomvm via the atomvm:read_priv/2 function, described in the AtomVM Programmer’s Guide.

For example, if you wanted to add a file my_app/priv/my_file.txt to a new file, you could use the following command:

$ packbeam create my_app.beam my_app/priv/my_file.txt my_lib.avm

Important

There are conventions for embedding non-BEAM files in AVM files that need to be followed in order to be able to
load these files programmatically within AtomVM. Generally, these files must obey the path
<module-name>/priv/<path-to-file>, where <module-name> is the name of a module, and <path-to-file> is a path
to the embedded file. (This path may include embedded / separators). Example: my_app/priv/bubbles/sample.txt

Start Flags

An AtomVM application must contain a start entrypoint, i.e., a module that exports the start/0 function. You can specify the name of this module via the --start flag. E.g.,

$ packbeam create --start main my_app.avm foo.beam bar.beam main.beam

Use of this flag will ensure that the main.beam module will be found first in the search order when the AtomVM virtual machine starts your application.

Pruning

Pruning an AVM file is a useful mechanism for making your AVM files smaller, and thus faster to flash and including less data than necessary. You can prune an AVM using the

$ packbeam create --start main --prune my_app.beam foo.beam bar.beam main.beam a.beam \
b.beam c.beam

Any BEAM files that contain no transitive references from the start module are removed from the output AVM file, making them smaller and less bloated.

Important

You can only use the --prune option if you specify a --start module.

Listing AVM file contents

You can list the contents of an AVM file via the list sub-command.

$ packbeam list myapp.avm
myapp.beam * [384]
myapp/priv/application.bin [220]

Any BEAM files with an exported start/0 function are listed with an asterisk (*). In general, if you want your application to start from a designated entrypoint, that BEAM file should occur first in the list.

The size (in bytes) of the entries are listed in square brackets ([]).

Extracting AVM file contents

You can extract elements of an AVM file, writing them to the file system, using the extract sub-command.

Specify the directory location into which you would like to extract the files using the -out flag, followed by the path to the input AVM file, and a list of paths from the input AVM you would like to extract.

$ mkdir mydir
$ packbeam extract -out mydir myapp.avm myapp/priv/application.bin
Writing to mydir ...
x myapp/priv/application.bin

Deleting AVM file contents

You can delete elements of an AVM file using the delete sub-command.

Specify the AVM file you would like to write as output (which can be the same as the input AVM file) using the -out flag, followed by the path to the input AVM file, and a list of paths from the input AVM you would like to delete.

$ packbeam delete -out myapp2.avm myapp.avm myapp/priv/application.bin

shell$ packbeam list myapp2.avm
myapp.beam * [384]

Help

To get help about packbeam syntax, use the help subcommand:

$ packbeam help

packbeam version 0.7.0

Syntax:
 packbeam <sub-command> <options> <args>

The following sub-commands are supported:

 create <options> <output-avm-file> [<input-file>]+
 where:
 <output-avm-file> is the output AVM file,
 [<input-file>]+ is a list of one or more input files,
 and <options> are among the following:
 [--prune|-p] Prune dependencies
 [--start|-s <module>] Start module
 [--remove_lines|-r] Remove line number information from AVM files

 list <options> <avm-file>
 where:
 <avm-file> is an AVM file,
 and <options> are among the following:
 [--format|-f csv|bare|default] Format output

 extract <options> <avm-file> [<element>]*
 where:
 <avm-file> is an AVM file,
 [<element>]+ is a list of one or more elements to extract
 (if empty, then extract all elements)
 and <options> are among the following:
 [--out|-o <output-directory>] Output directory into which to write elements
 (if unspecified, use the current working directory)

 delete <options> <avm-file> [<element>]+
 where:
 <avm-file> is an AVM file,
 [<element>]+ is a list of one or more elements to delete,
 and <options> are among the following:
 [--out|-o <output-avm-file>] Output AVM file

 version
 Print version and exit

 help
 Print this help

See also

For more detailed information about the atomvm_packbeam utility, see
the atomvm_packbeam documentation Github page.

Where to go from here

With knowledge of AtomVM tooling, you can more easily follow the AtomVM Example Programs, or read the Programmers Guide and start writing your own applications.

Programmers Guide

This guide is intended for programmers who develop applications targeted for AtomVM.

As an implementation of the Erlang virtual machine, AtomVM is designed to execute unmodified byte-code instructions compiled into BEAM files, either by the Erlang or Elixir compilers. This allow developers to write programs in their BEAM programming language of choice, and to use the common Erlang community tool-chains specific to their language platform, and to then deploy those applications onto the various devices that AtomVM supports.

This document describes the development workflow when writing AtomVM applications, as well as a high-level overview of the various APIs that are supported by AtomVM. With an understanding of this guide, you should be able to design, implement, and deploy applications onto a device running the AtomVM virtual machine.

AtomVM Features

Currently, AtomVM implements a strict subset of the BEAM instruction set.

A high level overview of the supported language features include:

	All the major Erlang types, including

	integers (with size limits)

	floats

	tuples

	lists

	binaries

	maps

	support for many Erlang BIFs and guard expressions to support the above types

	pattern matching (case statements, function clause heads, etc)

	try ... catch ... finally constructs

	anonymous functions

	process spawn and spawn_link

	send (!) and receive messages

	bit syntax (with some restrictions)

	reference counted binaries

	stacktraces

	symmetric multi-processing (SMP)

In addition, several features are supported specifically for integration with micro-controllers, including:

	Wifi networking (network)

	UDP and TCP/IP support (inet, gen_tcp and gen_udp)

	Peripheral and system support on micro-controllers, including

	GPIO, including pins reads, writes, and interrupts

	I2C interface

	SPI interface

	UART interface

	LEDC (PWM)

	non-volatile storage (NVS)

	RTC storage

	deep sleep

Limitations

While the list of supported features is long and growing, the currently unsupported Erlang/OTP and BEAM features include (but are not limited to):

	Atoms. Atoms larger than 255 bytes (255 ascii characters) are not supported.

	Bignums. Integer values are restricted to 64-bit values.

	Bit Syntax. While packing and unpacking of arbitrary (but less than 64-bit) bit values is supported, packing and unpacking of integer values at the start or end of a binary, or bordering binary packing or extraction must align on 8-bit boundaries. Arbitrary bit length binaries are not currently supported.

	The epmd and the disterl protocols are not supported.

	There is no support for code hot swapping.

	There is no support for a Read-Eval-Print-Loop. (REPL)

	Numerous modules and functions from Erlang/OTP standard libraries (kernel, stdlib, sasl, etc) are not implemented.

AtomVM bit syntax is restricted to alignment on 8-bit boundaries. Little-endian and signed insertion and extraction of integer values is restricted to 8, 16, and 32-bit values. Only unsigned big and little endian 64-bit values can be inserted into or extracted from binaries.

It is highly unlikely that an existing Erlang program targeted for Erlang/OTP will run unmodified on AtomVM. And indeed, even as AtomVM matures and additional features are added, it is more likely than not that Erlang applications will need to targeted specifically for the AtomVM platform. The intended target environment (small, cheap micro-controllers) differs enough from desktop or server-class systems in both scale and APIs that special care and attention is needed to target applications for such embedded environments.

That being said, many of the features of the BEAM are supported and provide a rich and compelling development environment for embedded devices, which Erlang and Elixir developers will find natural and productive.

AtomVM Development

This section describes the typical development environment and workflow most AtomVM developers are most likely to use.

Development Environment

In general, for most development purposes, you should be able to get away with an Erlang/OTP development environment, and for Elixir developers, and Elixir development environment. For specific version requirements, see the Release Notes.

We assume most development will take place on some UNIX-like environment (e.g., Linux, FreeBSD, or MacOS). Consult your local package manager for installation of these development environments.

Developers will want to make use of common Erlang or Elixir development tools, such as rebar3 for Erlang developers or mix for Elixir developers.

Developers will need to make use of some AtomVM tooling. Fortunately, there are several choices for developers to use:

	AtomVM PackBEAM executable (described below)

	atomvm_rebar3_plugin, for Erlang development using rebar3.

	ExAtomVM Mix plugin, Elixir development using Mix.

Some testing can be performed on UNIX-like systems, using the AtomVM executable that is suitable for your development environment. AtomVM applications that do not make use of platform-specific APIs are suitable for such tests.

Deployment and testing on micro-controllers is slightly more involved, as these platforms require additional hardware and software, described below.

ESP32 Deployment Requirements

In order to deploy AtomVM applications to and test on the ESP32 platform, developers will need:

	A computer running MacOS or Linux (Windows support is TBD);

	An ESP32 module with a USB/UART connector (typically part of an ESP32 development board);

	A USB cable capable of connecting the ESP32 module or board to your development machine (laptop or PC);

	The esptool program, for flashing the AtomVM image and AtomVM programs;

	(Optional, but recommended) A serial console program, such as minicom or screen, so that you can view console output from your AtomVM application.

STM32 Deployment Requirements

	A computer running MacOS or Linux (Windows is not currently supported);

	An stm32 board with a USB/UART connector (these are built into some boards such as the Nucleo product line) and a minimum of 512k (1M recommended) of flash and a minimum of 100k RAM;

	A USB cable capable of connecting the STM32 board or external UART connector to your development machine (laptop or PC);

	st-flash via stlink, to flash both AtomVM and your packed AVM applications. Make sure to follow its installation procedure before proceeding further.

	packbeam the AtomVM for packing and stripping *.beam files into the AtomVM *.avm format.

	(Optional, but recommended) A serial console program, such as minicom or screen, so that you can view console output from your AtomVM application.

Raspberry Pi Pico Deployment Requirements

	A computer running MacOS or Linux (Windows support is not currently supported);

	A Raspberry Pico board with a USB/UART connector (typically part of a development board);

	A USB cable capable of connecting the Raspberry Pico module or board to your development machine (laptop or PC);

	(Optional, but recommended) A serial console program, such as minicom or screen, so that you can view console output from your AtomVM application.

Development Workflow

For the majority of users, AtomVM applications are written in the Erlang or Elixir programming language. These applications are compiled to BEAM (.beam) files using standard Erlang or Elixir compiler tool chains (erlc, rebar3, mix, etc). The generated BEAM files contain byte-code that can be executed by the Erlang/OTP runtime, or by the AtomVM virtual machine.

Note

In a small number of cases, it may be useful to write parts of an application in the C programming language, as
AtomVM nifs or ports. However, writing AtomVM nifs and ports is outside of the scope of this document.

Once Erlang and/or Elixir files are compiled to BEAM files, AtomVM provides tooling for processing and aggregating BEAM files into AtomVM Packbeam (.avm) files, using AtomVM tooling, distributed as part of AtomVM, or as provided through the AtomVM community.

AtomVM packbeam files are the applications and libraries that run on the AtomVM virtual machine. For micro-controller devices, they are “flashed” or uploaded to the device; for command-line use of AtomVM (e.g., on Linux, FreeBSD, or MacOS), they are supplied as the first parameter to the AtomVM command.

The following diagram illustrates the typical development workflow, starting from Erlang or Elixir source code, and resulting in a deployed Packbeam file:

*.erl or *.ex *.beam
+-------+ +-------+
| |+ | |+
| ||+ | ||+
| ||| --------> | |||
| ||| Erlang/Elixir | |||
+-------+|| Compiler +-------+||
 +-------+| +-------+|
 +-------+ +-------+
 ^ |
 | | packbeam
 | |
 | v
 | +-------+
 | | |
 | test | |
 | debug | |
 | fix | |
 | +-------+
 | app.avm
 | |
 | | flash/upload
 | |
 | v
 +-------------------- Micro-controller
 device

The typical compile-test-debug cycle can be summarized in the following steps:

	Deploy the AtomVM virtual machine to your device

	Develop an AtomVM application in Erlang or Elixir

	Write application

	Deploy application to device

	Test/Debug/Fix application

	Repeat

Deployment of the AtomVM virtual machine and an AtomVM application currently require a USB serial connection. There is currently no support for over-the-air (OTA) updates.

For more information about deploying the AtomVM image and AtomVM applications to your device, see the Getting Started Guide

Applications

An AtomVM application is a collection of BEAM files, aggregated into an AtomVM “Packbeam” (.avm) file, and typically deployed (flashed) to some device. These BEAM files be be compiled from Erlang, Elixir, or any other language that targets the Erlang VM.

Attention

The return value from the start/0 function is ignored on the the generic_unix platform, most MCU platforms have
the option of rebooting the device if the start/0 function returns a value other than ok. Consult the
Build Instructions for your device to see how this
is configured.

Here, for example is one of the smallest AtomVM applications you can write:

-module(myapp).

-export([start/0]).

start() ->
 ok.

This particular application doesn’t do much, of course. The application will start and immediately terminate, with a return value of ok. Typical AtomVM applications will be more complex than this one, and the AVM file that contains the application BEAM files will be considerably larger and more complex than the above program.

Most applications will spawn processes, send and receive messages between processes, and
wait for certain conditions to apply before terminating, if they terminate at all. For applications
that spawn processes and run forever, you may need to add an empty receive ... end block, to
prevent the AtomVM from terminating prematurely, e.g.,

wait_forever() ->
 receive X -> X end.

Packbeam files

AtomVM applications are packaged into Packbeam (.avm) files, which contain collections of files, typically BEAM (.beam) files that have been generated by the Erlang or Elixir compiler.

At least one BEAM module in this file must contain an exported start/0 function. The first module in a Packbeam file that contain this function is the entry-point of your application and will be executed when the AtomVM virtual machine starts.

Not all files in a Packbeam need to be BEAM modules – you can embed any type of file in a Packbeam file, for consumption by your AtomVM application.

See also

The Packbeam format is described in more detail in the AtomVM PackBEAM format.

The AtomVM community has provided several tools for simplifying your experience, as a developer. These tools allow you to use standard Erlang and Elixir tooling (such as rebar3 and mix) to build Packbeam files and deploy then to your device of choice.

packbeam tool

The packbeam tool is a command-line application that can be used to create Packbeam files from a collection of input files:

$ packbeam help
packbeam version 0.7.0
Syntax:
 packbeam <sub-command> <options> <args>

The following sub-commands are supported:

 create <options> <output-avm-file> [<input-file>]+
 where:
 <output-avm-file> is the output AVM file,
 [<input-file>]+ is a list of one or more input files,
 and <options> are among the following:
 [--prune|-p] Prune dependencies
 [--start|-s <module>] Start module
 [--remove_lines|-r] Remove line number information from AVM files

 list <options> <avm-file>
 where:
 <avm-file> is an AVM file,
 and <options> are among the following:
 [--format|-f csv|bare|default] Format output

 extract <options> <avm-file> [<element>]*
 where:
 <avm-file> is an AVM file,
 [<element>]+ is a list of one or more elements to extract
 (if empty, then extract all elements)
 and <options> are among the following:
 [--out|-o <output-directory>] Output directory into which to write elements
 (if unspecified, use the current working directory)

 delete <options> <avm-file> [<element>]+
 where:
 <avm-file> is an AVM file,
 [<element>]+ is a list of one or more elements to delete,
 and <options> are among the following:
 [--out|-o <output-avm-file>] Output AVM file

 version
 Print version and exit

 help
 Print this help

For more information consult the packbeam section of AtomVM Tooling.

Running AtomVM

AtomVM is executed in different ways, depending on the platform. On most microcontrollers (e.g., the ESP32), the VM starts when the device is powered on. On UNIX platforms, the VM is started from the command-line using the AtomVM executable.

AtomVM will use the first module in the supplied AVM file that exports a start/0 function as the entrypoint for the application.

AtomVM program syntax

On UNIX platforms, you can specify a BEAM file or AVM file as the first argument to the executable, e.g.,

$ AtomVM foo.avm

Important

If you start the AtomVM executable with a BEAM file, then the corresponding module may not make any calls to
external function in other modules, with the exception of built-in functions and Nifs that are included in the VM.

Core APIs

The AtomVM virtual machine provides a set of Erlang built-in functions (BIFs) and native functions (NIFs), as well as a collection of Erlang and Elixir libraries that can be used from your applications.

This section provides an overview of these APIs. For more detailed information about specific APIs, please consult the API reference documentation.

Standard Libraries

AtomVM provides a limited implementations of standard library modules, including:

	base64

	gen_server

	gen_statem

	io and io_lib

	lists

	maps

	proplists

	supervisor

	timer

In addition AtomVM provides limited implementations of standard Elixir modules, including:

	List

	Tuple

	Enum

	Kernel

	Module

	Process

	Console

For detailed information about these functions, please consult the API reference documentation. These modules provide a strict subset of functionality from their Erlang/OTP counterparts. However, they aim to be API-compatible with the Erlang/OTP interfaces, at least for the subset of provided functionality.

Spawning Processes

AtomVM supports the actor concurrency model that is pioneered in the Erlang/OTP runtime. As such, users can spawn processes, send messages to and receive message from processes, and can link or monitor processes to be notified if they have crashed.

To spawn a process using a defined or anonymous function, pass the function to the spawn/1 function:

Pid = spawn(fun run_some_code/0),

The function you pass may admit closures, so for example you can pass variables defined outside of the scope of the function to the anonymous function to pass into spawn/1:

Args = ...
Pid = spawn(fun() -> run_some_code_with_args(Args) end),

Alternatively, you can pass a module, function name, and list of arguments to the spawn/3 function:

Args = ...
Pid = spawn(?MODULE, run_some_code_with_args, [Args]),

The spawn_opt/2,4 functions can be be used to spawn a function with additional options that control the behavior of the spawned processes, e.g.,

Pid = spawn_opt(fun run_some_code/0, [{min_heap_size, 1342}]),

The options argument is a properties list containing optionally the following entries:

	Key

	Value Type

	Default Value

	Description

	min_heap_size

	non_neg_integer()

	none

	Minimum heap size of the process. The heap will shrink no smaller than this size.

	max_heap_size

	non_neg_integer()

	unbounded

	Maximum heap size of the process. The heap will grow no larger than this size.

	link

	boolean()

	false

	Whether to link the spawned process to the spawning process.

	monitor

	boolean()

	false

	Whether to link the spawning process should monitor the spawned process.

	atomvm_heap_growth

	bounded_free | minimum | fibonacci

	bounded_free

	Strategy to grow the heap of the process.

Console Output

There are several mechanisms for writing data to the console.

For common debugging, many users will find erlang:display/1 sufficient for debugging:

erlang:display({foo, [{bar, tapas}]}).

The output parameter is any Erlang term, and a newline will be appended automatically.

Users may prefer using the io:format/1,2 functions for more controlled output:

io:format("The ~p did a ~p~n", [friddle, frop]).

Tip

The io_lib module can be used to format string data, as well.

Logging

AtomVM supports a subset of the OTP logging facility, allowing users to send log event to log handlers (by default, the console), and to install handlers that handle log events.

To log events, you are encouraged to use the logging macros from the OTP kernel application. You can use these macros at compile time, and the generated code can be run in AtomVM.

For example:

-include_lib("kernel/include/logger.hrl").
...
?LOG_NOTICE("Something happened that might require your attention: ~p", [TheThing])

By default, this will result in a message displayed on the console, with a timestamp, log level, PID of the process that initiated the log message, the module, function, and function arity, together with the supplied log message:

2023-07-04T18:34:56.387 [notice] <0.1.0> test_logger:test_default_logger/0 Something
happened that might require your attention: ThatThingThatHappened

Tip

Note that log messages need not (and generally should not) include newline separators (~n) in log format messages,
unless necessary.

Users may provide a format string, with an optional list of arguments. Alternatively, users can provide a map encapsulating a “report” in lieu of a format string. Reports provide a mechanism for supplying a set of structured data directly to log handlers (see below), without necessarily incurring the cost of formatting log messages.

As with OTP, the following ordered log levels (from high to low) are supported:

	emergency

	critical

	alert

	error

	warning

	notice

	info

	debug

By default, the logging facility drops any messages below notice level. To set the default log level for the logging subsystem, see the logger_manager section, below.

You can use the logger interface directly to log messages at different levels, but in general, the OTP logging macros are encouraged, as log events generated using the OTP macros include additional metadata (such as the location of the log event) you do not otherwise get using the functions in the logger module.

For example, the expression

logger:notice("Something happened that might require your attention: ~p", [TheThing])

may seem similar to using the ?LOG_NOTICE macro, but less contextual information will be included in the log event.

For more information about the OTP logging facility, see the Erlang/OTP Logging chapter.

Note

AtomVM does not currently support programmatic configuration of the logging subsystem. All changes to default
behavior should be done via the AtomVM logger_manager module (see below).

The logger_manager

In order to use the logger interface, you will need to first start the AtomVM logger_manager service.

Note

Future versions of AtomVM may automatically start the logging subsystem as part of a kernel application, but
currently, this service must be managed manually.

To start the logger_manager, use the logger_manager:start_link/1 function, passing in a configuration map for the logging subsystem.

For example, the default logging framework can be started via:

{ok, _Pid} = logger_manager:start_link(#{})

Tip

The logger_manager is a registered process, so the returned Pid may be ignored.

The configuration map supplied to the logger_manager may contain the following keys:

	Key

	Type

	Default

	Description

	log_level

	log_level()

	notice

	Primary log level

	logger

	logger_config()

	{handler, default, logger_std_h, undefined}

	Log configuration

	module_level

	module_level()

	undefined

	Log level specific to a set of modules

where log_level() is defined to be:

-type log_level() :: emergency | critical | alert | error | warning | notice | info | debug.

and logger_config() is defined as follows:

-type handler_id() :: default | atom().
-type handler_config() :: #{
 id => atom(),
 module => module(),
 level => logger:level() | all | none,
 config => term()
}.
-type logger_config() :: [
 {handler, default, undefined} |
 {
 handler,
 HandlerId :: handler_id(),
 Handler :: module(),
 HandlerConfig :: handler_config()
 } |
 {module_level, logger:level(), [module()]}
].

You can set the log level for all log handlers by setting the log_level in this configuration map. Any messages that are logged at levels “higher” than or equal to the configured log level will be logged by all log handlers.

The standard logger (logger_std_h) is included by default, if no default logger is specified (and if the default logger is not disabled – see below). The standard logger will output log events to the console.

You can specify multiple log handlers in the logger configuration. If a log entry is allowed for a given log level, then each log handler will handle the log message. For example, you might have a log handler that sends messages over the network to a syslog daemon, or you might have another handler that writes log messages to a file.

You can pass handler configuration int the config element of the handler_config() you specify when specifying a logger. The value of the config element can be any term and is made available to log handlers when events are logged (see below).

If the tuple {handler, default, undefined} is included in the logger configuration, the default logger will be disabled.

At most one default logger can be specified. If you want to replace the default logger (logger_std_h), then specify a logger with the handler id default.

You can specify different log levels for specific modules. For example, if you want to set the default log level for all handlers to be notice or higher, you can set the log level for a given module to info, and all info and higher messages will be logged for that module or set of modules. Conversely, you can “quiet” a module if it is particularly noisy by setting its level to something relatively high.

For more information about how to configure the logging subsystem, see the Kernel Configuration Parameters section of the OTP Logging chapter.

You can stop the logger_manager via the logger_manager:stop/0 function:

ok = logger_manager:stop()

Writing your own log handler

Additional loggers can be enabled via handler specifications. A handler module must implement and export the log/2 function, which takes a log event and a term containing the configuration for the logger handler instance.

For example:

-module(my_module).

-export([..., log/2, ...]).

log(LogEvent, HandlerConfig) ->
 %% do something with the log event
 %% return value is ignored

You can specify this handler in the logger_manager configuration (see above) via a stanza such as:

{handler, my_id, my_module, HandlerConfig}

A LogEvent is a map structure containing the following fields:

	Key

	Type

	Description

	timestamp

	integer()

	The time (in microseconds since the UNIX epoch) at which the log event was generated

	level

	logger:level()

	The log level with which the log event was generated

	pid

	pid()

	The process id of the Erlang process in which the event was generated

	msg

	string() | {string(), list()}

	The message format and arguments passed when the event was generated

	meta

	map()

	Metadata passed when the event was generated.

If the log event was generated using a logging macro, then the meta map also contains a location field with the following fields:

	Key

	Type

	Description

	file

	string()

	The path of the file in which the event was generated

	line

	non_neg_integer()

	The line number in the file in which the event was generated

	mfa

	{module(), function_name(), arity()}

	The MFA of the function in which the event was generated

The HandlerConfig is a map structure containing the id and module of the handler and is passed into the log handler via configuration of the logger_manager (see above).

Process Management

You can obtain a list of all processes in the system via erlang:processes/0:

Pids = erlang:processes().

And for each process, you can get detailed process information via the erlang:process_info/2 function:

io:format("Heap size for Pid ~p: ~p~n", [Pid, erlang:process_info(Pid, heap_size)]).

The return value is a tuple containing the key passed into the erlang:process_info/2 function and its associated value.

The currently supported keys are enumerated in the following table:

	Key

	Value Type

	Description

	heap_size

	non_neg_integer()

	Number of terms (in machine words) used in the process heap

	stack_size

	non_neg_integer()

	Number of terms (in machine words) used in the process stack

	message_queue_len

	non_neg_integer()

	Number of unprocessed messages in the process mailbox

	memory

	non_neg_integer()

	Total number of bytes used by the process (estimate)

See the word_size key in the System APIs section for information about how to find the number of bytes used in a machine word on the current platform.

External Term Format

The erlang:term_to_binary/1 function can be used to serialize arbitrary term data into and out of binary data. These operations can be useful for applications that wish to share term data over some network protocol, such as HTTP or MQTT, or wish to store serialized term data in some permanant sttorage (e.g., Non-volatile storage on ESP32 devices).

For example, to convert a term to a binary, use erlang:term_to_binary/1, e.g.,

%% erlang
Term = ...
Binary = erlang:term_to_binary(Term),

And to convert the binary back to a term, use erlang:binary_to_term/1,2, e.g.,

%% erlang
Binary = ...
{Term, _Used} = erlang:binary_to_term(Binary, [used]),

By default, AtomVM will encode all atoms using UTF-8 encoding. This encoding is the default encoding for OTP-26 and later releases.

For more information about Erlang external term format, consult the Erlang Documentation

System APIs

You can obtain system information about the AtomVM virtual machine via the erlang:system_info/1 function, which takes an atom parameter designating the desired datum. Allowable parameters include

	process_count The number of processes running in the system.

	port_count The number of ports running in the system.

	atom_count The number of atoms allocated in the system.

	word_size The word size (in bytes) on the current platform (typically 4 or 8).

	atomvm_version The version of AtomVM currently running (as a binary).

For example,

io:format("Atom Count: ~p~n", [erlang:system_info(atom_count)]).

Note

Additional platform-specific information is supported, depending on the platform type. See below.

Use the atomvm:platform/0 to obtain the system platform on which your code is running. The return value of this function is an atom who’s value will depend on the platform on which your application is running.

case atomvm:platform() of
 esp32 ->
 io:format("I am running on an ESP32!~n");
 stm32 ->
 io:format("I am running on an STM32!~n");
 generic_unix ->
 io:format("I am running on a UNIX box!~n")
end.

Use erlang:garbage_collect/0 or erlang:garbage_collect/1 to force the AtomVM garbage collector to run on a give process. Garbage collection will in general happen automatically when additional free space is needed and is rarely needed to be called explicitly.

The 0-arity version of this function will run the garbage collector on the currently executing process.

Pid = ... %% get a reference to some pid
ok = erlang:garbage_collect(Pid).

Use the erlang:memory/1 function to obtain information about allocated memory.

Currently, AtomVM supports the following types:

	Type

	Description

	binary

	Return the total amount of memory (in bytes) occupied by (reference counted) binaries

Note

Binary data small enough to be stored in the Erlang process heap are not counted in this measurement.

System Time

AtomVM supports numerous function for accessing the current time on the device.

Use erlang:timestamp/0 to get the current time since the UNIX epoch (Midnight, Jan 1, 1970, UTC), at microsecond granularity, expressed as a triple (mega-seconds, seconds, and micro-seconds):

{MegaSecs, Secs, MicroSecs} = erlang:timestamp().

Use erlang:system_time/1 to obtain the seconds, milliseconds or microseconds since the UNIX epoch (Midnight, Jan 1, 1970, UTC):

Seconds = erlang:system_time(second).
MilliSeconds = erlang:system_time(millisecond).
MicroSeconds = erlang:system_time(microsecond).

Use erlang:monotonic_time/1 to obtain a (possibly not strictly) monotonically increasing time measurement. Use the same time units to convert to seconds, milliseconds, or microseconds:

Seconds = erlang:monotonic_time(second).
MilliSeconds = erlang:monotonic_time(millisecond).
MicroSeconds = erlang:monotonic_time(microsecond).

Caution

Note erlang:monotonic_time/1 should not be used to calculate the wall clock time, but instead should be used by
applications to compute time differences in a manner that is independent of the system time on the device, which
might change, for example, due to NTP, leap seconds, or similar operations that may affect the wall time on the
device.

Use erlang:universaltime/0 to get the current time at second resolution, to obtain the year, month, day, hour, minute, and second:

{{Year, Month, Day}, {Hour, Minute, Second}} = erlang:universaltime().

On some platforms, you can use the atomvm:posix_clock_settime/2 to set the system time. Supply a clock id (currently, the only supported clock id is the atom realtime) and a time value as a tuple, containing seconds and nanoseconds since the UNIX epoch (midnight, January 1, 1970). For example,

SecondsSinceUnixEpoch = ... %% acquire the time
atomvm:posix_clock_settime(realtime, {SecondsSinceUnixEpoch, 0})

Warning

This operation is not supported yet on the stm32 platform. On most UNIX platforms, you typically need root
permission to set the system time.

On the ESP32 platform, you can use the Wifi network to set the system time automatically. For information about how to set system time on the ESP32 using SNTP, see the Network Programming Guide.

To convert a time (in seconds, milliseconds, or microseconds from the UNIX epoch) to a date-time, use the calendar:system_time_to_universal_time/2 function. For example,

Milliseconds = ... %% get milliseconds from the UNIX epoch
{
 {Year, Month, Day}, {Hour, Minute, Second}
} = calendar:system_time_to_universal_time(Milliseconds, millisecond).

Valid time units are second, millisecond, and microsecond.

Date and Time

A datetime() is a tuple containing a date and time, where a date is a tuple containing the year, month, and day (in the Gregorian calendar), expressed as integers, and a time is an hour, minute, and second, also expressed in integers.

The following Erlang type specification enumerates this type:

-type year() :: integer().
-type month() :: 1..12.
-type day() :: 1..31.
-type date() :: {year(), month(), day()}.
-type gregorian_days() :: integer().
-type day_of_week() :: 1..7.
-type hour() :: 0..23.
-type minute() :: 0..59.
-type second() :: 0..59.
-type time() :: {hour(), minute(), second()}.
-type datetime() :: {date(), time()}.

Erlang/OTP uses the Christian epoch to count time units from year 0 in the Gregorian calendar. The, for example, the value 0 in Gregorian seconds represents the date Jan 1, year 0, and midnight (UTC), or in Erlang terms, {{0, 1, 1}, {0, 0, 0}}.

Attention

AtomVM is currently limited to representing integers in at most 64 bits, with one bit representing the sign bit.
However, even with this limitation, AtomVM is able to resolve microsecond values in the Gregorian calendar for over
292,000 years, likely well past the likely lifetime of an AtomVM application (unless perhaps launched on a deep
space probe).

The calendar module provides useful functions for converting dates to Gregorian days, and date-times to Gregorian seconds.

To convert a date() to the number of days since January 1, year 0, use the calendar:date_to_gregorian_days/1 function, e.g.,

GregorianDays = calendar:date_to_gregorian_days({2023, 7, 23})

To convert a datetime() to convert the number of seconds since midnight January 1, year 0, use the calendar:datetime_to_gregorian_seconds/1 function, e.g.,

GregorianSeconds = calendar:datetime_to_gregorian_seconds({{2023, 7, 23}, {13, 31, 7}})

Warning

The calendar module does not support year values before year 0.

Miscellaneous APIs

Use atomvm:random/0 to generate a random unsigned 32-bit integer in the range 0..4294967295:

RandomInteger = atomvm:random().

Use crypto:strong_rand_bytes/1 to return a randomly populated binary of a specified size:

RandomBinary = crypto:strong_rand_bytes(32).

Use base64:encode/1 and base64:decode/1 to encode to and decode from Base64 format. The input value to these functions may be a binary or string. The output value from these functions is an Erlang binary.

Encoded = base64:encode(<<"foo">>).
<<"foo">> = base64:decode(Encoded).

You can Use base64:encode_to_string/1 and base64:decode_to_string/1 to perform the same encoding, but to return values as Erlang list structures, instead of as binaries.

StackTraces

You can obtain information about the current state of a process via stacktraces, which provide information about the location of function calls (possibly including file names and line numbers) in your program.

Currently in AtomVM, stack traces can be obtained in one of following ways:

	via try-catch blocks

	via catch blocks, when an error has been raised via the error Bif.

Note

AtomVM does not support erlang:get_stacktrace/0 which was deprecated in Erlang/OTP 21 and 22, stopped working in
Erlang/OTP 23 and was removed in Erlang/OTP 24. Support for accessing the current stacktrace via
erlang:process_info/2 may be added in the future.

For example a stack trace can be bound to a variable in the catch clause in a try-catch block:

try
 do_something()
catch
 _Class:_Error:Stacktrace ->
 io:format("Stacktrace: ~p~n", [Stacktrace])
end

Alternatively, a stack trace can be bound to the result of a catch expression, but only when the error is raised by the error Bif. For example,

{'EXIT', {foo, Stacktrace}} = (catch error(foo)),
io:format("Stacktrace: ~p~n", [Stacktrace])

Stack traces are printed to the console in a crash report, for example, when a process dies unexpectedly.

Stacktrace data is represented as a list of tuples, each of which represents a stack “frame”. Each tuple is of the form:

[{Module :: module(), Function :: atom(), Arity :: non_neg_integer(), AuxData :: aux_data()}]

where aux_data() is a (possibly empty) properties list containing the following elements:

[{file, File :: string(), line, Line :: pos_integer()}]

Stack frames are ordered from the frame “closest“ to the point of failure (the “top” of the stack) to the frame furthest from the point of failure (the “bottom” of the stack).

Stack frames will contain file and line information in the AuxData list if the BEAM files (typically embedded in AVM files) include <<“Line”>> chunks generated by the compiler. Otherwise, the AuxData will be an empty list.

Tip

Adding line information to BEAM files not only increases the size of BEAM files in storage, but calculation of file
and line information can have a non-negligible impact on memory usage. Memory-sensitive applications should
consider not including line information in BEAM files.

The packbeam tool does include file and line information in the AVM files it creates by default, but file and line information can be omitted via a command line option. For information about the packbeam too, see the atomvm_packbeam tool.

Reading data from AVM files

AVM files are generally packed BEAM files, but they can also contain non-BEAM files, such as plain text files, binary data, or even encoded Erlang terms.

Typically, these files are included from the priv directory in a build tree, for example, when using the atomvm_rebar3_plugin, though the atomvm_packbeam tool allow you to specify any location for files to include in AVM files.

By convention, these files obey the following path in an AVM file:

<application-name>/priv/<file-path>

For example, if you wanted to embed my_file.txt into your application AVM file (where your application name is, for example, my_application), you would use:

my_application/priv/my_file.txt

The atomvm:read_priv/2 function can then be used to extract the contents of this file into a binary, e.g.,

MyFileBin = atomvm:read_priv(my_application, <<"my_file.txt">>)

Tip

Embedded files may contain path separators, so for example <<"my_files/my_file.txt">> would be used if the AVM
file embeds my_file.txt using the path my_application/priv/my_files/my_file.txt

For more information about how to embed files into AVM files, see the atomvm_rebar3_plugin, and the atomvm_rebar3_plugin section of the AtomVM Tooling guide.

Code Loading

AtomVM provides a limited set of APIs for loading code and data embedded dynamically at runtime.

To load an AVM file from binary data, use the atomvm:add_avm_pack_binary/2 function. Supply a reference to the AVM data, together with a (possibly empty) list of options. Specify a name option, whose value is an atom, if you wish to close the AVM data at a later point in the program.

For example:

AVMData = ... %% load AVM data into memory as a binary
ok = atomvm:add_avm_pack_binary(AVMData, [{name, my_avm}])

You can also load AVM data from a file (on the generic_unix platform) or from a flash partition (on ESP32 platforms) using the atomvm:add_avm_pack_file/2 function. Specify a string (or binary) as the path to the AVM file, together with a list of options, such as name.

For example:

ok = atomvm:add_avm_pack_file("/path/to/file.avm", [{name, my_avm}])

On esp32 platforms, the partition name should be prefixed with the string /dev/partition/by-name/. Thus, for example, if you specify /dev/partition/by-name/main2.avm as the partition, the ESP32 flash should contain a data partition with the name main2.avm

For example:

ok = atomvm:add_avm_pack_file("/dev/partition/by-name/main2.avm", [])

To close a previous opened AVM by name, use the atomvm:close_avm_pack/2 function. Specify the name of the AVM pack used to add

ok = atomvm:close_avm_pack(my_avm, [])

Important

Currently, the options parameter is ignored, so use the empty list ([]) for forward compatibility.

You can load an individual BEAM file using the code:load_binary/3 function. Specify the Module name (as an atom), as well as the BEAM data you have loaded into memory.

For Example:

BEAMData = ... %% load BEAM data into memory as a binary
{module, Module} = code:load_binary(Module, Filename, BEAMData)

Attention

The Filename parameter is currently ignored.

You can load an individual BEAM file from the file system using the code:load_abs/1 function. Specify the path to the BEAM file. This path should not include the .beam extension, as this extension will be added automatically.

For example:

{module, Module} = code:load_abs("/path/to/beam/file/without/beam/extension")

Attention

This function is currently only supported on the generic_unix platform.

Math

AtomVM supports the following standard functions from the OTP math module:

	cos/1

	acos/1

	acosh/1

	asin/1

	asinh/1

	atan/1

	atan2/2

	atanh/1

	ceil/1

	cosh/1

	exp/1

	floor/1

	fmod/2

	log/1

	log10/1

	log2/1

	pow/2

	sin/1

	sinh/1

	sqrt/1

	tan/1

	tanh/1

	pi/0

The input values for these functions may be float or integer types. The return value is always a value of float type.

Input values that are out of range for the specific mathematical function or which otherwise are invalid or yield an invalid result (e.g., division by 0) will result in a badarith error.

Attention

If the AtomVM virtual machine is built with floating point arithmetic support disabled, these functions will result
in a badarg error.

Cryptographic Operations

You can hash binary date using the crypto:hash/2 function.

crypto:hash(sha, [<<"Some binary">>, $\s, "data"])

This function takes a hash algorithm, which may be one of:

-type md_type() :: md5 | sha | sha224 | sha256 | sha384 | sha512.

and an IO list. The output type is a binary, who’s length (in bytes) is dependent on the algorithm chosen:

	Algorithm

	Hash Length (bytes)

	md5

	16

	sha

	20

	sha224

	32

	sha256

	32

	sha384

	64

	sha512

	64

Attention

The crypto:hash/2 function is currently only supported on the ESP32 and generic UNIX platforms.

You can also use the legacy erlang:md5/1 function to compute the MD5 hash of an input binary. The output is a fixed-length binary (16 bytes)

Hash = erlang:md5(<<foo>>).

On ESP32, you can perform symmetric encryption and decryption of any iodata data using crypto_one_time/4,5 function.

Following ciphers are supported:

Without IV (using crypto_one_time/4):

	aes_128_ecb

	aes_192_ecb

	aes_256_ecb

With IV (using crypto_one_time/5):

	aes_128_cbc

	aes_192_cbc

	aes_256_cbc

	aes_128_cfb128

	aes_192_cfb128

	aes_256_cfb128

	aes_128_ctr

	aes_192_ctr

	aes_256_ctr

The function is implemented using mbedTLS, so please to its
documentation for further details.

Please refer to
Erlang crypto documentation for
additional details about these two functions.

Important

Note: mbedTLS doesn’t support padding for ciphers other than CCB, so block size must be accounted otherwise output
will be truncated.

ESP32-specific APIs

Certain APIs are specific to and only supported on the ESP32 platform. This section describes these APIs.

System-Level APIs

As noted above, the erlang:system_info/1 function can be used to obtain system-specific information about the platform on which your application is deployed.

You can request ESP32-specific information using using the following input atoms:

	esp32_free_heap_size Returns the available free space in the ESP32 heap.

	esp32_largest_free_block Returns the size of the largest free continuous block in the ESP32 heap.

	esp32_minimum_free_size Returns the smallest ever free space available in the ESP32 heap since boot, this will tell you how close you have come to running out of free memory.

	esp32_chip_info Returns map of the form #{features := Features, cores := Cores, revision := Revision, model := Model}, where Features is a list of features enabled in the chip, from among the following atoms: [emb_flash, bgn, ble, bt]; Cores is the number of CPU cores on the chip; Revision is the chip version; and Model is one of the following atoms: esp32, esp32_s2, esp32_s3, esp32_c3, etc.

	esp_idf_version Return the IDF SDK version, as a string.

For example,

FreeHeapSize = erlang:system_info(esp32_free_heap_size).

Non-volatile Storage

AtomVM provides functions for setting, retrieving, and deleting key-value data in binary form in non-volatile storage (NVS) on an ESP device. Entries in NVS survive reboots of the ESP device, and can be used a limited “persistent store” for key-value data.

Warning

NVS storage is limited in size, and NVS keys are restricted to 15 characters. Try to avoid writing frequently to NVS
storage, as the flash storage may degrade more rapidly with repeated writes to the medium.

NVS entries are stored under a namespace and key, both of which are expressed as atoms. AtomVM uses the namespace atomvm for entries under its control. Applications may read from and write to the atomvm namespace, but they are strongly discouraged from doing so, except when explicitly stated otherwise.

To set a value in non-volatile storage, use the esp:nvs_set_binary/3 function, and specify a namespace, key, and value:

Namespace = <<"my-namespace">>,
Key = <<"my-key">>,
esp:set_binary(Namespace, Key, <<"some-value">>).

To retrieve a value in non-volatile storage, use the esp:nvs_get_binary/2 function, and specify a namespace and key. You can optionally specify a default value (of any desired type), if an entry does not exist in non-volatile storage:

Value = esp:get_binary(Namespace, Key, <<"default-value">>).

To delete an entry, use the esp:nvs_erase_key/2 function, and specify a namespace and key:

ok = esp:erase_key(Namespace, Key).

You can delete all entries in a namespace via the esp:nvs_erase_all/1 function:

ok = esp:erase_all(Namespace).

Finally, you can delete all entries in all namespaces on the NVS partition via the esp:nvs_reformat/0 function:

ok = esp:reformat().

Applications should use the esp:nvs_reformat/0 function with caution, in case other applications are making using the non-volatile storage.

Caution

NVS entries are currently stored in plaintext and are not encrypted. Applications should exercise caution if
sensitive security information, such as account passwords, are stored in NVS storage.

Storage

AtomVM provides support for mounting and unmounting storage on ESP32 devices, such as SD cards or internal flash memory. This functionality is accessible through the esp:mount/4 and esp:umount/1 functions.

Mounting MMC SD card

To mount a MMC SD card, use the esp:mount/4 function:

case esp:mount("sdmmc", "/sdcard", fat, []) of
 {ok, MountedRef} ->
 io:format("SD card mounted successfully~n"),
 {ok, MountedRef};
 {error, Reason} ->
 io:format("Failed to mount SD card: ~p~n", [Reason]),
 {error, Reason}
end.

Mounting SPI SD card

To mount a SPI SD card, first create a SPI instance configured for your specific board, then use the esp:mount/4 function:

SPIConfig = [
 {bus_config, [
 {miso, 19},
 {mosi, 23},
 {sclk, 18},
 {peripheral, "spi3"}
]}],
SPI = spi:open(SPIConfig),
case esp:mount("sdspi", "/sdcard", fat, [{spi_host, SPI}, {cs, 5}]) of
 {ok, MountedRef} ->
 io:format("SD card mounted successfully~n"),
 {ok, MountedRef};
 {error, Reason} ->
 io:format("Failed to mount SD card: ~p~n", [Reason]),
 {error, Reason}
end.

Mounting internal flash

To mount internal flash, use the esp:mount/4 function:

case esp:mount("/dev/partition/by-name/partition_name", "/test", fat, []) of
 {ok, MountedRef} ->
 io:format("Flash mounted successfully~n"),
 {ok, MountedRef};
 {error, Reason} ->
 io:format("Failed to mount partition: ~p~n", [Reason]),
 {error, Reason}
end.

Unmounting Storage

To unmount a previously mounted storage device, use the esp:umount/1 function, with the reference returned from esp:mount/4:

case esp:umount(MountedRef) of
 ok ->
 io:format("Storage unmounted successfully~n");
 {error, Reason} ->
 io:format("Failed to unmount storage: ~p~n", [Reason])
end.

These functions allow you to work with external storage devices or partitions on your ESP32, enabling you to read from and write to files on the mounted filesystem. This can be particularly useful for applications that need to store or access large amounts of data that don’t fit in the device’s main memory or non-volatile storage.

Important

Remember to properly unmount any mounted filesystems before powering off or resetting the device to prevent data corruption.

Restart and Deep Sleep

You can use the esp:restart/0 function to immediately restart the ESP32 device. This function does not return a value.

esp:restart().

Use the esp:reset_reason/0 function to obtain the reason for the ESP32 restart. Possible values include:

	esp_rst_unknown

	esp_rst_poweron

	esp_rst_ext

	esp_rst_sw

	esp_rst_panic

	esp_rst_int_wdt

	esp_rst_task_wdt

	esp_rst_wdt

	esp_rst_deepsleep

	esp_rst_brownout

	esp_rst_sdio

Use the esp:deep_sleep/1 function to put the ESP device into deep sleep for a specified number of milliseconds. Be sure to safely stop any critical processes running before this function is called, as it will cause an immediate shutdown of the device.

esp:deep_sleep(60*1000).

Use the esp:sleep_get_wakeup_cause/0 function to inspect the reason for a wakeup. Possible return values include:

	sleep_wakeup_ext0

	sleep_wakeup_ext1

	sleep_wakeup_timer

	sleep_wakeup_touchpad

	sleep_wakeup_ulp

	sleep_wakeup_gpio

	sleep_wakeup_uart

	sleep_wakeup_wifi

	sleep_wakeup_cocpu

	sleep_wakeup_cocpu_trag_trig

	sleep_wakeup_bt

	undefined (no sleep wakeup)

	error (unknown other reason)

The values matches the semantics of esp_sleep_get_wakeup_cause.

case esp:sleep_get_wakeup_cause() of
 sleep_wakeup_timer ->
 io:format("Woke up from a timer~n");
 sleep_wakeup_ext0 ->
 io:format("Woke up from ext0~n");
 sleep_wakeup_ext1 ->
 io:format("Woke up from ext1~n");
 _ ->
 io:format("Woke up for some other reason~n")
end.

Use the esp:sleep_enable_ext0_wakeup/2 and esp:sleep_enable_ext1_wakeup/2 functions to configure ext0 and ext1 wakeup mechanisms. They follow the semantics of esp_sleep_enable_ext0_wakeup and esp_sleep_enable_ext1_wakeup.

-spec shutdown() -> no_return().
shutdown() ->
 % Configure wake up when GPIO 37 is set to low (M5StickC main button)
 ok = esp:sleep_enable_ext0_wakeup(37, 0),
 % Deep sleep for 1 hour
 esp:deep_sleep(60*60*1000).

RTC Memory

On ESP32 systems, you can use (slow) “real-time clock” memory to store data between deep sleeps. This storage can be useful, for example, to store interim state data in your application.

Important

RTC memory is initialized if power is lost.

To store data in RTC slow memory, use the esp:rtc_slow_set_binary/1 function:

esp:rtc_slow_set_binary(<<"some binary data">>)

To retrieve data in RTC slow memory, use the esp:rtc_slow_get_binary/0 function:

Data = esp:rtc_slow_get_binary()

By default, RTC slow memory in AtomVM is limited to 4098 (4k) bytes. This value can be modified at build time using an IDF SDK KConfig setting. For instructions about how to build AtomVM, see the AtomVM Build Instructions.

Miscellaneous ESP32 APIs

	esp:freq_hz/0
The esp:freq_hz/0 function can be used to retrieve the clock frequency of the chip.

	esp:partition_list/0
The esp:partition_list/0 function can be used to retrieve information about the partitions on an ESP32 flash.

The return type is a list of tuples, each of which contains the partition id (as a binary), partition type and sub-type (both of which are represented as integers), the start of the partition as an address along with its size, as well as a list of properties about the partition, as a properties list.

PartitionList = esp:partition_list(),
lists:foreach(
 fun({
 PartitionId, PartitionType, PartitionSubtype, PartitionAddress, PartitionSize,
 PartitionProperties
 }) ->
 %% ...
 end,
 PartitionList
)

Note

The partition properties are currently empty ([]).

See also

For information about the encoding of partition types and sub-types, see the IDF SDK partition
type definitions.

	esp:get_mac/1
The esp:get_mac/1 function can be used to retrieve the network Media Access Control (MAC) address for a given interface, wifi_sta or wifi_softap. The return value is a 6-byte binary, in accordance with the IEEE 802 family of specifications.

MacAddress = esp:get_mac(wifi_sta)

Peripherals

The AtomVM virtual machine and libraries support APIs for interfacing with peripheral devices connected to the ESP32 and other supported microcontrollers. This section provides information about these APIs. Unless otherwise stated the documentation for these peripherals is specific to the ESP32, most peripherals are not yet supported on rp2040 or stm32 devices - but work is on-going to expand support for these platforms.

GPIO

The GPIO peripheral has nif support on all platforms. One notable difference on the STM32 platform is that Pin() is defined as a tuple consisting of the bank (a.k.a. port) and pin number. For example a pin labeled PB7 on your board would be {b,7}.

You can read and write digital values on GPIO pins using the gpio module, using the digital_read/1 and digital_write/2 functions. You must first set the pin mode using the gpio:set_pin_mode/2 function, using input or output as the direction parameter.

Digital Read

To read the value of a GPIO pin (high or low), use gpio:digital_read/1.

For ESP32 family:

Pin = 2,
gpio:set_pin_mode(Pin, input),
case gpio:digital_read(Pin) of
 high ->
 io:format("Pin ~p is high ~n", [Pin]);
 low ->
 io:format("Pin ~p is low ~n", [Pin])
end.

For STM32 only the line with the Pin definition needs to be a tuple:

Pin = {c, 13},
gpio:set_pin_mode(Pin, input),
case gpio:digital_read(Pin) of
 high ->
 io:format("Pin ~p is high ~n", [Pin]);
 low ->
 io:format("Pin ~p is low ~n", [Pin])
end.

The Pico has an additional initialization step gpio:init/1 before using a pin for gpio:

Pin = 2,
gpio:init(Pin),
gpio:set_pin_mode(Pin, input),
case gpio:digital_read(Pin) of
 high ->
 io:format("Pin ~p is high ~n", [Pin]);
 low ->
 io:format("Pin ~p is low ~n", [Pin])
end.

Digital Write

To set the value of a GPIO pin (high or low), use gpio:digital_write/2.

For ESP32 family:

Pin = 2,
gpio:set_pin_mode(Pin, output),
gpio:digital_write(Pin, low).

For the STM32 use a pin tuple:

Pin = {b, 7},
gpio:set_pin_mode(Pin, output),
gpio:digital_write(Pin, low).

Pico needs the extra gpio:init/1 before gpio:read/1 too:

Pin = 2,
gpio:init(Pin),
gpio:set_pin_mode(Pin, output),
gpio:digital_write(Pin, low).

Interrupt Handling

Interrupts are supported on both the ESP32 and STM32 platforms. They require using the GPIO port driver, using gpio:open/0 and gpio:set_direction/3.

You can get notified of changes in the state of a GPIO pin by using the gpio:set_int/3 function. This function takes a reference to a GPIO instance, a Pin, and a trigger. Allowable triggers are rising, falling, both, low, high, and none (to disable an interrupt).

When a trigger event occurs, such as a pin rising in voltage, a tuple will be delivered to the process that set the interrupt containing the atom gpio_interrupt and the pin.

Pin = 2,
GPIO = gpio:open(),
gpio:set_direction(GPIO, Pin, input),
ok = gpio:set_int(GPIO, Pin, rising),
receive
 {gpio_interrupt, Pin} ->
 io:format("Pin ~p is rising ~n", [Pin])
end.

You can also use the gpio:set_int/4 function, and specify a listener pid() or registered name as the recipient of interrupt messages as the fourth parameter.

Pin = 2,
GPIO = gpio:open(),
gpio:set_direction(GPIO, Pin, input),
Listener = spawn(fun() -> my_gen_statem() end),
ok = gpio:set_int(GPIO, Pin, rising, Listener),
timer:sleep(infinity).

Interrupts can be removed by using the gpio:remove_int/2 function.

Use the gpio:close/1 function to close the GPIO driver and free any resources in use by it, supplying a reference to a previously opened GPIO driver instance. Any references to the closed GPIO instance are no longer valid after a successful call to this function, and all interrupts will be removed.

ok = gpio:close(GPIO).

Since only one instance of the GPIO driver is allowed, you may also simply use gpio:stop/0 to remove all interrupts, free the resources, and close the GPIO driver port.

ok = gpio:stop().

ESP32 ADC

The esp_adc module provides the functionality to use the ESP32 family SAR ADC peripheral to measure (analog) voltages from a pin and obtain both raw bit values as well as calibrated voltage values in millivolts.

The module provides two sets of APIs for using the ADC peripheral; there is a set of low level resource based nifs, and a gen_server managed set of convenience functions. The nifs rely on unit and channel handle resources for configuring and taking measurements. The convenience functions use the gen_server to maintain these resources and use pin numbers to interact with the driver. Examples for both APIs can be found the AtomVM repository atomvm/examples/erlang/esp32 directory. A demonstration of the simple APIs is as follows:

...
 Pin = 33,
 ok = esp_adc:start(Pin, [{bitwidth, bit_12}, {atten, db_2_5}]),
 {ok, {Raw, Mv}} = esp_adc:read(Pin, [raw, voltage, {samples, 48}]),
 io:format("ADC pin ~p raw value=~p millivolts=~p~n", [Pin, Raw, Mv]),
 ok = esp_adc:stop(),
...

ESP32 ADC configuration options

Some newer ESP32 family devices only use a single fixed bit width, this is typically 12 bits, but some provide 13 bit resolution. The ESP32 classic supports 9 bit up to 12 bit resolutions. The bitwidth option bit_max will use the highest supported resolution for the device.

The attenuation option determines the range of voltage to be measured, the specific voltage range for each setting varies by chip, so as always consult your devices datasheet before connecting an ADC pin to a voltage supply to be measured. The chart below depicts the approximate safe voltage ranges for each attenuation level:

	Attenuation

	Min Millivolts

	Max Millivolts

	db_0

	0-100

	750-950

	db_2_5

	0-100

	1050-1250

	db_6

	0-150

	1300-1750

	db_11 | db_12

	0-150

	2450-2500

Consult the datasheet of your device for the exact voltage ranges supported by each attenuation level.

Warning

The option db_11 has been superseded by db_12. The option db_11 and will be deprecated in a future release, applications should be updated to use db_12 (except for builds with ESP-IDF versions prior to v5.2). To Continue to support older IDF version builds, the default will remain db_11, which is the maximum tolerated voltage on all builds, as db_12 supported builds will automatically use db_12 in place of db_11. After db_11 is deprecated in all builds (with the sunset of ESP-IDF v5.1 support) the default will be changed to db_12.

Note

For a higher degree of accuracy increase the number of sample taken, the default is 64. If highly stable and accurate ADC measurements are required for an application you may need to connect a bypass capacitor (e.g., a 100 nF ceramic capacitor) to the ADC input pad in use, to minimize noise. This chart from the Espressif ADC Calibration Driver documentation shows the difference between the use of a capacitor and without, as well as with a capacitor and multisampling of 64 samples.

[image: ADC Noise Comparison]

You can clearly see the noisy results without a capacitor. This is mitigated by the use of multisampling but without a decoupling capacitor results will likely still contain some noise.

When an ADC channel is configured by the use of esp_adc:acquire/2,4 or esp_adc:start/1,2 the driver will select the optimal calibration mechanism supported by the device and channel configuration. If neither the line fitting or curve fitting mechanisms are supported by the device using the provided configuration options an estimated result will be used to provide voltage values, based on the formula suggested by Espressif. For chips using the line fitting calibration scheme that do not have the default vref efuse set, a default vref of 1100 mV is used, this is not currently settable.

ESP32 ADC read options

The read options take the form of a proplist, if the key raw is true ({raw, true} or simply appears in the list as the atom raw), then the raw value will be returned in the first element of the returned tuple. Otherwise, this element will be the atom undefined.

If the key voltage is true (or simply appears in the list as an atom), then a calibrated voltage value will be returned in millivolts in the second element of the returned tuple. Otherwise, this element will be the atom undefined.

You may specify the number of samples (1 - 100000) to be taken and averaged over using the tuple {samples, Samples :: 1..100000}, the default is 64.

Warning

Using a large number of samples can significantly increase the amount of time before a response, up to several seconds.

I2C

The i2c module encapsulates functionality associated with the 2-wire Inter-Integrated Circuit (I2C) interface.

See also

Information about the ESP32 I2C interface can be found in the IDF SDK I2C Documentation.

The AtomVM I2C implementation uses the AtomVM Port mechanism and must be initialized using the i2c:open/1 function. The single parameter contains a properties list, with the following elements:

	Key

	Value Type

	Required

	Description

	scl

	integer()

	yes

	I2C clock pin (SCL)

	sda

	integer()

	yes

	I2C data pin (SDA)

	clock_speed_hz

	integer()

	yes

	I2C clock frequency (in hertz)

	peripheral

	`string()

	binary()`

	no (platform dependent default)

For example,

I2C = i2c:open([{scl, 21}, {sda, 22}, {clock_speed_hz, 40000}]),

Once the port is opened, you can use the returned I2C instance to read and write bytes to the attached device.

Both read and write operations require the I2C bus address from which data is read or to which data is written. A devices address is typically hard-wired for the specific device type, or in some cases may be changed by the addition or removal of a resistor.

In addition, you may optionally specify a register to read from or write to, as some devices require specification of a register value. Consult your device’s data sheet for more information and the device’s I2C bus address and registers, if applicable.

There are two patterns for writing data to an I2C device:

	Queuing i2c:write_bytes/2,3,4 write operations between calls to i2c:begin_transmission/2 and i2c:end_transmission/1. In this case, write operations are queued locally and dispatched to the target device when the i2c:end_transmission/1 operation is called;

	Writing a byte or sequence of bytes in one i2c:write_bytes/2,3,4 operation.

The choice of which pattern to use will depend on the device being communicated with. For example, some devices require a sequence of write operations to be queued and written in one atomic write, in which case the first pattern is appropriate. E.g.,

ok = i2c:begin_transmission(I2C),
ok = i2c:qwrite_bytes(I2C, DeviceAddress, Register1, <<"some sequence of bytes">>),
ok = i2c:qwrite_bytes(I2C, DeviceAddress, Register2, <<"some other of bytes">>),
ok = i2c:end_transmission(I2C),

In other cases, you may just need to write a byte or sequence of bytes in one operation to the device:

ok = i2c:write_bytes(I2C, DeviceAddress, Register1, <<"write it all in one go">>),

Reading bytes is more straightforward. Simply use i2c:read_bytes/3,4, specifying the port instance, device address, optionally a register, and the number of bytes to read:

{ok, BinaryData} = i2c:read_bytes(I2C, DeviceAddress, Register, Len)

To close the I2C driver and free any resources in use by it, use the i2c:close/1 function, supplying a reference to the I2C driver instance created via i2c:open/1:

ok = i2c:close(I2C)

Once the I2C driver is closed, any calls to i2c functions using a reference to the I2C driver instance should return with the value {error, noproc}.

SPI

The spi module encapsulates functionality associated with the 4-wire Serial Peripheral Interface (SPI) in leader mode.

See also

Information about the ESP32 SPI leader mode interface can be found in the IDF SDK SPI Documentation.

The AtomVM SPI implementation uses the AtomVM Port mechanism and must be initialized using the spi:open/1 function. The single parameter to this function is a properties list containing:

	bus_config – a properties list containing entries for the SPI bus

	device_config – an optional properties list containing entries for each device attached to the SPI Bus

The bus_config properties list contains the following entries:

	Key

	Value Type

	Required

	Description

	poci (miso)

	integer()

	yes

	SPI peripheral-out, controller-in pin (MOSI)

	pico (mosi)

	integer()

	yes

	SPI peripheral-in, controller-out pin (MISO)

	sclk

	integer()

	yes

	SPI clock pin (SCLK)

The device_config entry is a properties list containing entries for each device attached to the SPI Bus. Each entry in this list contains the user-selected name (as an atom) of the device, followed by configuration for the named device.

Each device configuration is a properties list containing the following entries:

	Key

	Value Type

	Required

	Description

	clock_speed_hz

	integer()

	yes

	SPI clock frequency (in hertz)

	mode

	0..3

	yes

	SPI mode, indicating clock polarity (CPOL) and clock phase (CPHA). Consult the SPI specification and data sheet for your device, for more information about how to control the behavior of the SPI clock.

	cs

	integer()

	yes

	SPI chip select pin (CS)

	address_len_bits

	0..64

	yes

	number of bits in the address field of a read/write operation (for example, 8, if the transaction address field is a single byte)

	command_len_bits

	0..16

	default: 0

	number of bits in the command field of a read/write operation (for example, 8, if the transaction command field is a single byte)

For example,

SPIConfig = [
 {bus_config, [
 {miso, 19},
 {mosi, 27},
 {sclk, 5}
]},
 {device_config, [
 {my_device_1, [
 {clock_speed_hz, 1000000},
 {mode, 0},
 {cs, 18},
 {address_len_bits, 8}
]}
 {my_device_2, [
 {clock_speed_hz, 1000000},
 {mode, 0},
 {cs, 15},
 {address_len_bits, 8}
]}
]}
],
SPI = spi:open(SPIConfig),
...

In the above example, there are two SPI devices, one using pin 18 chip select (named my_device_1), and once using pin 15 chip select (named my_device_2).

Once the port is opened, you can use the returned SPI instance, along with the selected device name, to read and write bytes to the attached device.

To read a byte at a given address on the device, use the spi:read_at/4 function:

{ok, Byte} = spi:read_at(SPI, DeviceName, Address, 8)

To write a byte at a given address on the device, use the spi_write_at/5 function:

write_at(SPI, DeviceName, Address, 8, Byte)

Hint

The spi:write_at/5 takes integer values as inputs and the spi:read_at/4 returns integer values. You may read and
write up to 32-bit integer values via these functions.

Consult your local device data sheet for information about various device addresses to read from or write to, and their semantics.

The above functions are optimized for small reads and writes to an SPI device, typically one byte at a time.

The SPI interface also supports a more generic way to read and write from an SPI device, supporting arbitrary-length reads and writes, as well as a number of different “phases” of writes, per the SPI specification.

These phases include:

	Command phase – write of an up-to 16-bit command to the SPI device

	Address Phase – write of an up-to 64-bit address to the SPI device

	Data Phase – read or write of an arbitrary amount of of data to and from the device.

Any one of these phases may be included or omitted in any given SPI transaction.

In order to achieve this level of flexibility, these functions allow users to specify the SPI transaction through a map structure, which includes fields that specify the behavior of an SPI transaction.

The following table enumerates the permissible fields in this structure:

	Key

	Value Type

	Description

	command

	integer() (16-bit)

	(Optional) SPI command. The low-order command_len_bits are written to the device.

	address

	integer() (64-bit)

	(Optional) Device address. The low-order address_len_bits are written to the device.

	write_data

	binary()

	(Optional) Data to write

	write_bits

	non_neg_integer()

	Number of bits to write from `write_data’. If not included,then all bits will be written.

	read_bits

	non_neg_integer()

	Number of bits to read from the SPI device. If not included, then the same number of bits will be read as were written.

To write a blob of data to the SPI device, for example, you would use:

WriteData = <<"some binary data">>,
ok = spi:write(SPI, DeviceName, #{write_data => WriteData})

To write and simultaneously read back a blob of data to the SPI device, you would use:

{ok, ReadData} = spi:write_read(SPI, DeviceName, #{write_data => WriteData})

The size of the returned data is the same as the size of the written data, unless otherwise specified by the read_bits field.

Use the spi:close/1 function to close the SPI driver and free any resources in use by it, supplying a reference to a previously opened SPI driver instance. Any references to the closed SPI instance are no longer valid after a successful call to this function.

ok = spi:close(SPI).

UART

The uart module encapsulates functionality associated with the Universal Asynchronous Receiver/Transmitter (UART) interface supported on ESP32 devices. Some devices, such as NMEA GPS receivers, make use of this interface for communicating with an ESP32.

See also

Information about the ESP32 UART interface can be found in the IDF SDK UART Documentation.

The AtomVM UART implementation uses the AtomVM Port mechanism and must be initialized using the uart:open/2 function.

The first parameter indicates the ESP32 UART hardware interface. Legal values are:

"UART0" | "UART1" | "UART2"

The selection of the hardware interface dictates the default RX and TX pins on the ESP32:

	Port

	RX pin

	TX pin

	UART0

	GPIO_3

	GPIO_1

	UART1

	GPIO_9

	GPIO_10

	UART2

	GPIO_16

	GPIO_17

The second parameter is a properties list, containing the following elements:

	Key

	Value Type

	Required

	Default Value

	Description

	speed

	integer()

	no

	115200

	UART baud rate (bits/sec)

	data_bits

	5 | 6 | 7 | 8

	no

	8

	UART data bits

	stop_bits

	1 | 2

	no

	1

	UART stop bits

	flow_control

	hardware | software | none

	no

	none

	Flow control

	parity

	even | odd | none

	no

	none

	UART parity check

For example,

UART = uart:open("UART0", [{speed, 9600}])

Once the port is opened, you can use the returned UART instance to read and write bytes to the attached device.

To read data from the UART channel, use the uart:read/1 function. The return value from this function is a binary:

Bin = uart:read(UART)

To write data to the UART channel, use the uart_write/2 function. The input data is any Erlang I/O list:

uart:write(UART, [<<"any">>, $d, $a, $t, $a, "goes", <<"here">>])

Consult your local device data sheet for information about the format of data to be read from or written to the UART channel.

To close the UART driver and free any resources in use by it, use the uart:close/1 function, supplying a reference to the UART driver instance created via uart:open/2:

ok = uart:close(UART)

Once the UART driver is closed, any calls to uart functions using a reference to the UART driver instance should return with the value {error, noproc}.

LED Control

The LED Control API can be used to drive LEDs, as well as generate PWM signals on GPIO pins.

The LEDC API is encapsulated in the ledc module and is a direct translation of the IDF SDK LEDC API, with a natural mapping into Erlang. This API is intended for users with complex use-cases, and who require low-level access to the LEDC APIs.

The ledc.hrl module should be used for common modes, channels, duty cycle resolutions, and so forth.

-include("ledc.hrl").

%% create a 5khz timer
SpeedMode = ?LEDC_HIGH_SPEED_MODE,
Channel = ?LEDC_CHANNEL_0,
ledc:timer_config([
 {duty_resolution, ?LEDC_TIMER_13_BIT},
 {freq_hz, 5000},
 {speed_mode, ?LEDC_HIGH_SPEED_MODE},
 {timer_num, ?LEDC_TIMER_0}
]).

%% bind pin 2 to this timer in a channel
ledc:channel_config([
 {channel, Channel},
 {duty, 0},
 {gpio_num, 2},
 {speed_mode, ?LEDC_HIGH_SPEED_MODE},
 {hpoint, 0},
 {timer_sel, ?LEDC_TIMER_0}
]).

%% set the duty cycle to 0, and fade up to 16000 over 5 seconds
ledc:set_duty(SpeedMode, Channel, 0).
ledc:update_duty(SpeedMode, Channel).
TargetDuty = 16000.
FadeMs = 5000.
ok = ledc:set_fade_with_time(SpeedMode, Channel, TargetDuty, FadeMs).

Protocols

AtomVM supports network programming on devices that support it, specifically the ESP32 platform, with its built-in support for WIFI networking, and of course on the UNIX platform.

This section describes the network programming APIs available on AtomVM.

Network (ESP32 only)

The ESP32 supports WiFi connectivity as part of the built-in WiFi and Bluetooth radio (and in most modules, an integrated antenna). The WIFI radio on an ESP32 can operate in several modes:

	STA (Station) mode, whereby it acts as a member of an existing WiFi network;

	AP (Access Point) mode, whereby the ESP32 acts as an access point for other devices; or

	AP+STA mode, whereby the ESP32 behaves both as a member of an existing WiFi network and as an access point for other devices.

AtomVM supports these modes of operation via the network module, which is used to initialize the network and allow applications to respond to events within the network, such as a network disconnect or reconnect, or a connection to the ESP32 from another device.

See also

Establishment and maintenance of network connections on roaming devices is a complex and subtle art, and the AtomVM
network module is designed to accommodate as many IoT scenarios as possible. This section of the programmer’s guide
is deliberately brief and only addresses the most basic scenarios. For a more detailed explanation of the AtomVM
network module and its many use-cases, please refer to the AtomVM Network Programming Guide.

STA mode

To connect your ESP32 to an existing WiFi network, use the network:wait_for_sta/1,2 convenience function, which abstracts away some of the more complex details of ESP32 STA mode.

This function takes a station mode configuration, as a properties list, and optionally a timeout (in milliseconds) before connecting to the network should fail. The default timeout, if unspecified, is 15 seconds.

The station mode configuration supports the following options:

	Key

	Value Type

	Required

	Default Value

	Description

	ssid

	string() | binary()

	yes

	-

	WiFi AP SSID

	psk

	string() | binary()

	yes, if network is encrypted

	-

	WiFi AP password

	dhcp_hostname

	string() | binary()

	no

	atomvm-<MAC> where <MAC> is the factory-assigned MAC-address of the device

	DHCP hostname for the connecting device

Important

The WiFi network to which you are connecting must support DHCP and IPv4.
IPv6 addressing is not yet supported on AtomVM.

If the ESP32 device connects to the specified network successfully, the device’s assigned address, netmask, and gateway address will be returned in an {ok, ...} tuple; otherwise, an error is returned.

For example:

Config = [
 {ssid, <<"myssid">>},
 {psk, <<"mypsk">>},
 {dhcp_hostname, <<"mydevice">>}
],
case network:wait_for_sta(Config, 15000) of
 {ok, {Address, _Netmask, _Gateway}} ->
 io:format("Acquired IP address: ~p~n", [Address]);
 {error, Reason} ->
 io:format("Network initialization failed: ~p~n", [Reason])
end

Once connected to a WiFi network, you may begin TCP or UDP networking, as described in more detail below.

For information about how to handle disconnections and re-connections to a WiFi network, see the AtomVM Network Programming Guide.

AP mode

To turn your ESP32 into an access point for other devices, you can use the network:wait_for_ap/1,2 convenience function, which abstracts away some of the more complex details of ESP32 AP mode. When the network is started, the ESP32 device will assign itself the 192.168.4.1 address. Any devices that connect to the ESP32 will take addresses in the 192.168.4/24 network.

This function takes an access point mode configuration, as a properties list, and optionally a timeout (in milliseconds) before starting the network should fail. The default timeout, if unspecified, is 15 seconds.

The access point mode configuration supports the following options:

	Key

	Value Type

	Required

	Default Value

	Description

	ssid

	string() | binary()

	no

	atomvm-<MAC> where <MAC> is the factory-assigned MAC-address of the device

	WiFi AP SSID

	ssid_hidden

	boolean()

	no

	false

	Whether the AP SSID should be hidden (i.e., not broadcast)

	psk

	string() | binary()

	yes, if network is encrypted

	-

	WiFi AP password. Warning: If this option is not specified, the network will be an open network, to which anyone who knows the SSID can connect and which is not encrypted.

	ap_max_connections

	non_neg_integer()

	no

	4

	Maximum number of devices that can be connected to this AP

If the ESP32 device starts the AP network successfully, the ok atom is returned; otherwise, an error is returned.

For example:

Config = [
 {psk, <<"mypsk">>}
],
case network:wait_for_ap(Config, 15000) of
 ok ->
 io:format("AP network started at 192.168.4.1~n");
 {error, Reason} ->
 io:format("Network initialization failed: ~p~n", [Reason])
end

Once the WiFi network is started, you may begin TCP or UDP networking, as described in more detail below.

For information about how to handle connections and disconnections from attached devices, see the AtomVM Network Programming Guide.

STA+AP mode

For information about how to run the AtomVM network in STA and AP mode simultaneously, see the AtomVM Network Programming Guide.

SNTP

For information about how to use SNTP to synchronize the clock on your device, see the AtomVM Network Programming Guide.

UDP

AtomVM supports network programming using the User Datagram Protocol (UDP) via the gen_udp module. This modules obeys the syntax and semantics of the Erlang/OTP gen_udp interface.

Attention

Not all of the Erlang/OTP gen_udp functionality is implemented in AtomVM. For details, consult the
AtomVM API documentation.

To open a UDP port, use the gen_udp:open/1,2 function. Supply a port number, and if your application plans to receive UDP messages, specify that the port is active via the {active, true} property in the optional properties list.

For example:

Port = 44404,
case gen_udp:open(Port, [{active, true}, binary]) of
 {ok, Socket} ->
 {ok, SockName} = inet:sockname(Socket)
 io:format("Opened UDP socket on ~p.~n", [SockName])
 Error ->
 io:format("An error occurred opening UDP socket: ~p~n", [Error])
end

If the port is active, you can receive UDP messages in your application. They will be delivered as a 5-tuple, starting with the udp atom, and containing the socket, address and port from which the message was sent, as well as the datagram packet, itself, as a list (by default) or a binary. To choose the format, pass list or binary in options, as with Erlang/OTP.

receive
 {udp, _Socket, Addr, Port, Packet} ->
 io:format("Received UDP packet ~p from address ~p port ~p~n", [Packet, Addr, Port])
end,

With a reference to a UDP Socket, you can send messages to a target UDP endpoint using the gen_udp:send/4 function. Specify the UDP socket returned from gen_udp:open/1,2, the address (as a 4-tuple of octets), port number, and the datagram packet to send:

Packet = <<":アトムＶＭ">>,
Address = {192, 168, 1, 101},
Port = 44404,
case gen_udp:send(Socket, Address, Port, Packet) of
 ok ->
 io:format("Sent ~p~n", [Packet]);
 Error ->
 io:format("An error occurred sending a packet: ~p~n", [Error])
end

Important

IPv6 networking is not currently supported in AtomVM.

TCP

AtomVM supports network programming using the Transport Connection Protocol (TCP) via the gen_tcp module. This modules obeys the syntax and semantics of the Erlang/OTP gen_tcp interface.

Attention

Not all of the Erlang/OTP gen_tcp functionality is implemented in AtomVM. For details, consults the
AtomVM API documentation.

Server-side TCP

Server side TCP requires opening a listening socket, and then waiting to accept connections from remote clients. Once a connection is established, the application may then use a combination of sending and receiving packets over the established connection to or from the remote client.

Attention

Programming TCP on the server-side using the gen_tcp interface is a subtle
art, and this portion of the documentation will not go into all of the design choices available when designing a TCP
application.

Start by opening a listening socket using the gen_tcp:listen/2 function. Specify the port number on which the TCP server should be listening:

case gen_tcp:listen(44405, []) of
 {ok, ListenSocket} ->
 {ok, SockName} = inet:sockname(Socket),
 io:format("Listening for connections at address ~p.~n", [SockName]),
 spawn(fun() -> accept(ListenSocket) end);
 Error ->
 io:format("An error occurred listening: ~p~n", [Error])
end.

In this particular example, the server will spawn a new process to wait to accept a connection from a remote client, by calling the gen_tcp:accept/1 function, passing in a reference to the listening socket. This function will block until a client has established a connection with the server.

When a client connects, the function will return a tuple {ok, Socket}, where Socket is a reference to the connection between the client and server:

accept(ListenSocket) ->
 io:format("Waiting to accept connection...~n"),
 case gen_tcp:accept(ListenSocket) of
 {ok, Socket} ->
 {ok, SockName} = inet:sockname(Socket),
 {ok, Peername} = inet:peername(Socket),
 io:format("Accepted connection. local: ~p peer: ~p~n", [SockName, Peername]),
 spawn(fun() -> accept(ListenSocket) end),
 echo();
 Error ->
 io:format("An error occurred accepting connection: ~p~n", [Error])
 end.

Note

Note that immediately after accepting a connection, this example code will spawn a new process to accept any new
connections from other clients.

The socket returned from gen_tcp:accept/1 can then be used to send and receive messages to the connected client:

echo() ->
 io:format("Waiting to receive data...~n"),
 receive
 {tcp_closed, _Socket} ->
 io:format("Connection closed.~n"),
 ok;
 {tcp, Socket, Packet} ->
 {ok, Peername} = inet:peername(Socket),
 io:format("Received packet ~p from ~p. Echoing back...~n", [Packet, Peername]),
 gen_tcp:send(Socket, Packet),
 echo()
 end.

In this case, the server program will continuously echo the received input back to the client, until the client closes the connection.

For more information about the gen_tcp server interface, consult the AtomVM API Reference Documentation.

Client-side TCP

Client side TCP requires establishing a connection with an endpoint, and then using a combination of sending and receiving packets over the established connection.

Start by opening a connection to another TCP endpoint using the gen_tcp:connect/3 function. Supply the address and port of the TCP endpoint.

For example:

Address = {192, 168, 1, 101},
Port = 44405,
case gen_tcp:connect(Address, Port, []) of
 {ok, Socket} ->
 {ok, SockName} = inet:sockname(Socket),
 {ok, Peername} = inet:peername(Socket),
 io:format("Connected to ~p from ~p~n", [Peername, SockName]);
 Error ->
 io:format("An error occurred connecting: ~p~n", [Error])
end

Once a connection is established, you can use a combination of

SendPacket = <<":アトムＶＭ">>,
case gen_tcp:send(Socket, SendPacket) of
 ok ->
 receive
 {tcp_closed, _Socket} ->
 io:format("Connection closed.~n"),
 ok;
 {tcp, _Socket, ReceivedPacket} ->
 {ok, Peername} = inet:peername(Socket),
 io:format("Received ~p from ~p~n", [ReceivedPacket, Peername])
 end;
 Error ->
 io:format("An error occurred sending a packet: ~p~n", [Error])
end.

For more information about the gen_tcp client interface, consults the AtomVM API documentation.

Socket Programming

AtomVM supports a subset of the OTP socket interface, giving users more fine-grained control in socket programming.

The OTP socket APIs are relatively new (they were introduced in OTP 22 and have seen revisions in OTP 24). These APIs broadly mirror the BSD Sockets API, and should be familiar to most programmers who have had to work with low-level operating system networking interfaces. AtomVM supports a strict subset of the OTP APIs. Future versions of AtomVM may add additional coverage of these APIs.

The following types are relevant to this interface and are referenced in the remainder of this section:

-type domain() :: inet.
-type type() :: stream | dgram.
-type protocol() :: tcp | udp.
-type socket() :: any().
-type sockaddr() :: sockaddr_in().
-type sockaddr_in() :: #{
 family := inet,
 port := port_number(),
 addr := any | loopback | in_addr()
}.
-type in_addr() :: {0..255, 0..255, 0..255, 0..255}.
-type port_number() :: 0..65535.
-type socket_option() :: {socket, reuseaddr} | {socket, linger}.

Create a socket using the socket:open/3 function, providing a domain, type, and protocol. Currently, AtomVM supports the inet domain, stream and dgram types, and tcp and udp protocols.

For example:

{ok, Socket} = socket:open(inet, stream, tcp),

Server-side TCP Socket Programming

To program using sockets on the server side, you can bind an opened socket to an address and port number using the socket:bind/2 function, supplying a map that specifies the address and port number.

This map may contain the following entries:

	Key

	Type

	Default

	Description

	family

	inet

	

	The address family. (Currently, only inet is supported)

	addr

	in_addr() | any | loopback

	

	The address to which to bind. The any value will bind the socket to all interfaces on the device. The loopback value will bind the socket to the loopback interface on the device.

	port

	port_number()

	

	The port to which to bind the socket. If no port is specified, the operating system will choose a port for the user.

For example:

PortNumber = 8080,
ok = socket:bind(Socket, #{family => inet, addr => any, port => PortNumber}),

To listen for connections, use the socket:listen/1 function:

ok = socket:listen(Socket),

Once your socket is listening on an interface and port, you can wait to accept a connection from an incoming client using the socket:accept/1 function.

This function will block the current execution context (i.e., Erlang process) until a client establishes a TCP connection with the server:

{ok, ConnectedSocket} = socket:accept(Socket),

Tip

Many applications will spawn processes to listen for socket connections, so that the main execution context of your
application is not blocked.

Client-side TCP Socket Programming

To program using sockets on the client side, you can connect an opened socket to an address and port number using the socket:connect/2 function, supplying a map that specifies the address and port number.

This map may contain the following entries:

	Key

	Type

	Default

	Description

	family

	inet

	

	The address family. (Currently, only inet is supported)

	addr

	in_addr() | loopback

	

	The address to which to connect. The loopback value will connect the socket to the loopback interface on the device.

	port

	port_num()

	

	The port to which to connect the socket.

ok = socket:connect(Socket, #{family => inet, addr => loopback, port => 44404})

Sending and Receiving Data

Once you have a connected socket (either via socket:connect/2 or socket:accept/1), you can send and receive data on that socket using the socket:send/2 and socket:recv/1 functions. Like the socket:accept/1 function, these functions will block until data is sent to a connected peer (or until the data is written to operating system buffers) or received from a connected peer.

The socket:send/2 function can take a binary blob of data or an io-list, containing binary data.

For example, a process that receives data and echos it back to the connected peer might be implemented as follows:

case socket:recv(ConnectedSocket) of
 {ok, Data} ->
 case socket:send(ConnectedSocket, Data) of
 ok ->
 io:format("All data was sent~n");
 {ok, Rest} ->
 io:format("Some data was sent. Remaining: ~p~n", [Rest]);
 {error, Reason} ->
 io:format("An error occurred sending data: ~p~n", [Reason])
 end;
 {error, closed} ->
 io:format("Connection closed.~n");
 {error, Reason} ->
 io:format("An error occurred waiting on a connected socket: ~p~n", [Reason])
end.

The socket:recv/1 function will block the current process until a packet has arrived or until the local or remote socket has been closed, or some other error occurs.

Note that the socket:send/2 function may return ok if all of the data has been sent, or {ok, Rest}, where Rest is the remaining part of the data that was not sent to the operating system. If the supplied input to socket:send/2 is an io-list, then the Rest will be a binary containing the rest of the data in the io-list.

Getting Information about Connected Sockets

You can obtain information about connected sockets using the socket:sockname/1 and socket:peername/1 functions. Supply the connected socket as a parameter. The address and port are returned in a map structure

For example:

{ok, #{addr := LocalAddress, port := LocalPort}} = socket:sockname(ConnectedSocket),
{ok, #{addr := PeerAddress, port := PeerPort}} = socket:peername(ConnectedSocket),

Closing and Shutting down Sockets

Use the socket:close/1 function to close a connected socket:

ok = socket:close(ConnectedSocket)

Attention

Data that has been buffered by the operating system may not be delivered, when a socket is closed via the close/1
operation.

For a more controlled way to close full-duplex connected sockets, use the socket:shutdown/2 function. Provide the atom read if you only want to shut down the reads on the socket, write if you want to shut down writes on the socket, or read_write to shut down both reads and writes on a socket. Subsequent reads or writes on the socket will result in an einval error on the calls, depending on how the socket has been shut down.

For example:

ok = socket:shutdown(Socket, read_write)

Setting Socket Options

You can set options on a socket using the socket:setopt/3 function. This function takes an opened socket, a key, and a value, and returns ok if setting the option succeeded.

Currently, the following options are supported:

	Option Key

	Option Value

	Description

	{socket, reuseaddr}

	boolean()

	Sets SO_REUSEADDR on the socket.

	{socket, linger}

	#{onoff => boolean(), linger => non_neg_integer()}

	Sets SO_LINGER on the socket.

	{otp, rcvbuf}

	non_neg_integer()

	Sets the default buffer size (in bytes) on receive calls. This value is only used if the Length parameter of the socket:recv family of functions has the value 0; otherwise, the specified non-zero length in the socket:recv takes precedence. Note that the OTP option value default is not currently supported.

For example:

ok = socket:setopt(Socket, {socket, reuseaddr}, true),
ok = socket:setopt(Socket, {socket, linger}, #{onoff => true, linger => 0}),
ok = socket:setopt(Socket, {otp, rcvbuf}, 1024),

UDP Socket Programming

You can use the socket interface to send and receive messages over the User Datagram Protocol (UDP), in addition to TCP.

To use UDP sockets, open a socket using the dgram type and udp protocol.

For example:

{ok, Socket} = socket:open(inet, dgram, udp)

To listen for UDP connections, use the socket:bind/2 function, as described above.

For example:

PortNumber = 512,
ok = socket:bind(Socket, #{family => inet, addr => any, port => PortNumber}),

Use the socket:recvfrom/1 function to receive UDP packets from clients on your network. When a packet arrives, this function will return the received packet, as well as the address of the client that sent the packet.

For example:

case socket:recvfrom(dSocket) of
 {ok, {From, Packet}} ->
 io:format("Received packet ~p from ~p~n", [Packet, From]);
 {error, Reason} ->
 io:format("Error on recvfrom: ~p~n", [Reason])
end;

Important

The socket:recvfrom/1 function will block the current process until a packet has arrived or until the local or
remote socket has been closed, or some other error occurs.

Use the socket:sendto/3 function to send UDP packets to a specific destination. Specify the socket, data, and destination address you would like the packet to be delivered to.

For example:

Dest = #{family => inet, addr => loopback, port => 512},
case socket:sendto(Socket, Data, Dest) of
 ok ->
 io:format("Send packet ~p to ~p.~n", [Data, Dest]);
 {ok, Rest} ->
 io:format("Send packet ~p to ~p. Remaining: ~p~n", [Data, Dest, Rest]);
 {error, Reason} ->
 io:format("An error occurred sending a packet: ~p~n", [Reason])
end

Close a UDP socket just as you would a TCP socket, as described above.

Miscellaneous Networking APIs

You can retrieve information about hostnames and services using the net:getaddrinfo/1 and net:getaddrinfo/2 functions. The return value is a list of maps each of which contains address information about the host, including its family (inet), protocol (tcp or udp), type (stream or dgram), and the address, currently an IPv4 tuple.

Important

Currently, the net:getaddrinfo/1,2 functions only supports reporting of IPv4 addresses.

For example:

{ok, AddrInfos} = net:getaddrinfo("www.atomvm.net"),

lists:foreach(
 fun(AddrInfo) ->
 #{
 family := Family,
 protocol := Protocol,
 type := Type,
 address := Address
 } = AddrInfo,

 io:format(
 "family: ~p protocol: ~p type: ~p address: ~p", [Family, Protocol, Type, Address]
)

 end,
 AddrInfos
),

The host parameter can be a domain name (typically) or a dotted pair IPv4 address.

The returned map contains the network family (currently, only inet is supported), the protocol, type, and address of the host.

The address is itself a map, containing the family, port and IPv4 address of the requested host, e.g.,

#{family => inet, port => 0, addr => {192, 168, 212, 153}}

Note

The OTP documentation states that the address is returned
under the address key in the address info map. However, OTP appears to use addr as the key. For compatibility
with OTP 22 ff., AtomVM supports both the address and addr keys in this map (they reference the same inner map).

If you want to narrow the information you get back to a specific service type, you can specify a service name or port number (as a string value) as the second parameter:

{ok, AddrInfos} = net:getaddrinfo("www.atomvm.net", "https"),
...

Service names are well-known identifiers on the internet, but they may vary from operating system to operating system. See the services(3) man pages for more information.

Note

Narrowing results via the service parameter is not supported on all platforms. In the case where it is not
supported, AtomVM will resort to retrying the request without the service parameter.

Where to go from here

For more examples of how to use the AtomVM APIs check out the AtomVM Example Programs.

If you have not already, you may want to read the chapter on AtomVM Tooling to help you get your applications built and flashed to a microcontroller.

Network Programming Guide

One of the exciting features of the ESP32 and the Pico-W is their support for WiFi networking, allowing ESP32 and Pico-W micro-controllers to communicate with the outside world over common IP networking protocols, such as TCP or IDP. The ESP32 and the Pico-W can be configured in station mode (STA), whereby the devices connect to an existing access point, as well as “softAP” mode (AP), whereby they function as an access point, to which other stations can connect. The ESP32 also supports a combined STA+softAP mode, which allows the device to function in both STA and softAP mode simultaneously.

AtomVM provides an Erlang API interface for interacting with the WiFi networking layer on ESP32 and Pico-W devices, providing support for configuring your ESP32 or Pico-W device in STA mode, AP mode, or a combined STA+AP mode, allowing Erlang/Elixir applications to send and receive data from other devices on a network. This interface is encapsulated in the network module, which implements a simple interface for connecting to existing WiFi networks or for functioning as a WiFi access point. The same network module is used for both the ESP32 and the Pico-W.

Once the network has been set up (in STA or AP mode), AtomVM can use various socket interfaces to interact with the socket layer to create a client or server application. For example, on ESP32, AtomVM supports the gen_udp and gen_tcp APIs, while AtomVM extensions may support HTTP, MQTT, and other protocols built over low-level networking interfaces.

The AtomVM networking API leverages callback functions, allowing applications to be responsive to changes in the underlying network, which can frequently occur in embedded applications, where devices can easily lose and then regain network connectivity. In such cases, it is important for applications to be resilient to changes in network availability, by closing or re-opening socket connections in response to disconnections and re-connections in the underlying network.

This document describes the basic design of the AtomVM network interfaces, and how to interact programmatically with it.

Station (STA) mode

In STA mode, the ESP32 or the Pico-W connect to an existing WiFi network.

In this case, the input configuration should be a properties list containing a tuple of the form {sta, <sta-properties>}, where <sta-properties> is a property list containing configuration properties for the device in station mode.

The <sta-properties> property list should contain the following entries:

	{ssid, string() | binary()} The SSID to which the device should connect.

	{psk, string() | binary()} The password required to authenticate to the network, if required.

The network:start/1 will immediately return {ok, Pid}, where Pid is the process ID of the network server instance, if the network was properly initialized, or {error, Reason}, if there was an error in configuration. However, the application may want to wait for the device to connect to the target network and obtain an IP address, for example, before starting clients or services that require network access.

Applications can specify callback functions, which get triggered as events emerge from the network layer, including connection to and disconnection from the target network, as well as IP address acquisition.

Callback functions can be specified by the following configuration parameters:

	{connected, fun(() -> term())} A callback function which will be called when the device connects to the target network.

	{disconnected, fun(() -> term())} A callback function which will be called when the device disconnects from the target network.

	{got_ip, fun((ip_info()) -> term())} A callback function which will be called when the device obtains an IP address. In this case, the IPv4 IP address, net mask, and gateway are provided as a parameter to the callback function.

Warning

IPv6 addresses are not yet supported in AtomVM.

Callback functions are optional, but are highly recommended for building robust WiFi applications. The return value from callback functions is ignored, and AtomVM provides no guarantees about the execution context (i.e., BEAM process) in which these functions are invoked.

In addition, the following optional parameters can be specified to configure the AP network (ESP32 only):

	{dhcp_hostname, string()|binary()} The DHCP hostname as which the device should register (<<"atomvm-<hexmac>">>, where <hexmac> is the hexadecimal representation of the factory-assigned MAC address of the device).

	{beacon_timeout, fun(() -> term())} A callback function which will be called when the device does not receive a beacon frame from the connected access point during the “inactive time” (6 second default, currently not configurable).

The following example illustrates initialization of the WiFi network in STA mode. The example program will configure the network to connect to a specified network. Events that occur during the lifecycle of the network will trigger invocations of the specified callback functions.

Config = [
 {sta, [
 {ssid, <<"myssid">>},
 {psk, <<"mypsk">>},
 {connected, fun connected/0},
 {got_ip, fun got_ip/1},
 {disconnected, fun disconnected/0}
 {dhcp_hostname, <<"myesp32">>}
]}
],
{ok, Pid} = network:start(Config),
...

The following callback functions will be called when the corresponding events occur during the lifetime of the network connection.

connected() ->
 io:format("Connected to AP.~n").

gotIp(IpInfo) ->
 io:format("Got IP: ~p~n", [IpInfo]).

disconnected() ->
 io:format("Disconnected from AP.~n").

In a typical application, the network should be configured and an IP address should be acquired first, before starting clients or services that have a dependency on the network.

STA Mode Convenience Functions

The network module supports the network:wait_for_sta/1,2 convenience functions for applications that do not need robust connection management. These functions are synchronous and will wait until the device is connected to the specified AP. Supply the properties list specified in the {sta, [...]} component of the above configuration, in addition to an optional timeout (in milliseconds).

For example:

Config = [
 {ssid, <<"myssid">>},
 {psk, <<"mypsk">>},
 {dhcp_hostname, <<"mydevice">>}
],
case network:wait_for_sta(Config, 15000) of
 {ok, {Address, _Netmask, _Gateway}} ->
 io:format("Acquired IP address: ~p~n", [Address]);
 {error, Reason} ->
 io:format("Network initialization failed: ~p~n", [Reason])
end

To obtain the signal strength (in decibels) of the connection to the associated access point use network:sta_rssi/0.

AP mode

In AP mode, the ESP32 starts a WiFi network to which other devices (laptops, mobile devices, other ESP32 devices, etc) can connect. The ESP32 will create an IPv4 network, and will assign itself the address 192.168.4.1. Devices that attach to the ESP32 in AP mode will be assigned sequential addresses in the 192.168.4.0/24 range, e.g., 192.168.4.2, 192.168.4.3, etc.

To initialize the ESP32 device in AP mode, the input configuration should be a properties list containing a tuple of the form {ap, <ap-properties>}, where <ap-properties> is a property list containing configuration properties for the device in AP mode.

The <ap-properties> property list may contain the following entries:

	{ssid, string() | binary()} The SSID to which the device should connect.

	{psk, string() | binary()} The password required to authenticate to the network, if required. Note that this password must be a minimum of 8 characters.

	{ap_channel, wifi_channel()} The channel the access point should use.

If the SSID is omitted in configuration, the SSID name atomvm-<hexmac> will be created, where <hexmac> is the hexadecimal representation of the factory-assigned MAC address of the device. This name should be sufficiently unique to disambiguate it from other reachable ESP32 devices, but it may also be difficult to read or remember.

If the password is omitted, then an open network will be created, and a warning will be printed to the console. Otherwise, the AP network will be started using WPA+WPA2 authentication.

If the channel is omitted the default chanel for esp32 is 1. This setting is only used while a device is operation is AP mode only. If ap_channel is configured, it will be temporarily changed to match the associated access point if AP + STA mode is used and the station is associated with an access point. This is a hardware limitation due to the modem radio only being able to operate on a single channel (frequency) at a time.

The network:start/1 will immediately return {ok, Pid}, where Pid is the process id of the network server, if the network was properly initialized, or {error, Reason}, if there was an error in configuration. However, the application may want to wait for the device to to be ready to accept connections from other devices, or to be notified when other devices connect to this AP.

Applications can specify callback functions, which get triggered as events emerge from the network layer, including when a station connects or disconnects from the AP, as well as when a station is assigned an IP address.

Callback functions can be specified by the following configuration parameters:

	{ap_started, fun(() -> term())} A callback function which will be called when the AP endpoint has started and is ready to be connected to.

	{sta_connected, fun((Mac::binary()) -> term())} A callback function which will be called when a device connects to the AP. The MAC address of the connected station, as a 6-byte binary, is passed to the callback function.

	{sta_disconnected, fun((Mac::binary()) -> term())} A callback function which will be called when a device disconnects from the AP. The MAC address of the disconnected station, as a 6-byte binary, is passed to the callback function.

	{sta_ip_assigned, fun((ipv4_address()) -> term())} A callback function which will be called when the AP assigns an IP address to a station. The assigned IP address is passed to the callback function.

Warning

IPv6 addresses are not yet supported in AtomVM.

Callback functions are completely optional, but are highly recommended for building robust WiFi applications. The return value from callback functions is ignored, and AtomVM provides no guarantees about the execution context (i.e., BEAM process) in which these functions are invoked.

In addition, the following optional parameters can be specified to configure the AP network:

	{ssid_hidden, boolean()} Whether the AP network should be not be broadcast (false, by default)

	{max_connections, non_neg_integer()} The maximum number of devices that can connect to this network (by default, 4)

The following example illustrates initialization of the WiFi network in AP mode. The example program will configure the network to connect to start a WiFi network with the name myssid and password mypsk. Events that occur during the lifecycle of the network will trigger invocations of the specified callback functions.

Config = [
 {ap, [
 {ssid, <<"myssid">>},
 {psk, <<"mypsk">>},
 {ap_started, fun ap_started/0},
 {sta_connected, fun sta_connected/1},
 {sta_ip_assigned, fun sta_ip_assigned/1},
 {sta_disconnected, fun sta_disconnected/1},
]}
],
{ok, Pid} = network:start(Config),
...

The following callback functions will be called when the corresponding events occur during the lifetime of the network connection.

ap_started() ->
 io:format("AP started.~n").

sta_connected(Mac) ->
 io:format("STA connected with mac ~p~n", [Mac]).

sta_disconnected(Mac) ->
 io:format("STA disconnected with mac ~p~n", [Mac]).

sta_ip_assigned(Address) ->
 io:format("STA assigned address ~p~n", [Address]).

In a typical application, the network should be configured and the application should wait for the AP to report that it has started, before starting clients or services that have a dependency on the network.

AP Mode Convenience Functions

The network module supports the network:wait_for_ap/1,2 convenience functions for applications that do not need robust connection management. These functions are synchronous and will wait until the device is successfully starts an AP. Supply the properties list specified in the {ap, [...]} component of the above configuration, in addition to an optional timeout (in milliseconds).

For example:

Config = [
 {psk, <<"mypsk">>}
],
case network:wait_for_ap(Config, 15000) of
 ok ->
 io:format("AP network started at 192.168.4.1~n");
 {error, Reason} ->
 io:format("Network initialization failed: ~p~n", [Reason])
end

STA+AP mode

The network module can be started in both STA and AP mode. In this case, the ESP32 device will both connect to an access point in its STA mode, and will simultaneously serve as an access point in its role in AP mode.

In order to enable both STA and AP mode, simply provide valid configuration for both modes in the configuration structure supplied to the network:start/1 function.

SNTP Support

You may configure the networking layer to automatically synchronize time on the ESP32 with an NTP server accessible on the network.

To synchronize time with an NTP server, add a property list with the tag sntp at the top level configuration passed into the network:start/1 function. Specify the NTP hostname or IP address with which your device should sync using the host property tag. The host value can be a string or binary.

You can also specify a callback function that will get called when the clock is synchronized with the SNTP server via the synchronized property tag. This function takes a tuple with the updated time in seconds and microseconds.

For example:

{sntp, [
 {host, <<"pool.ntp.org">>},
 {synchronized, fun sntp_synchronized/1}
]}

where the sntp_synchronized/1 function is defined as:

sntp_synchronized({TVSec, TVUsec}) ->
 io:format("Synchronized time with SNTP server. TVSec=~p TVUsec=~p~n", [TVSec, TVUsec]).

Note

The device must be in STA mode and connected to an access point in order to use an SNTP server on your network
or on the internet.

NVS Credentials

It can become tiresome to enter an SSID and password for every application, and in general it is bad security practice to hard-wire WiFi credentials in your application source code.

You may instead store an STA or AP SSID and PSK in non-volatile storage (NVS) on and ESP32 device.

Caution

Credentials are stored un-encrypted and in plaintext and should not be considered secure. Future versions may use
encrypted NVS storage.

Stopping the Network

To stop the network and free any resources in use, issue the stop/0 function:

network:stop().

Caution

Stop is currently unimplemented.

Build Instructions

This guide is intended for anyone interested in building the AtomVM virtual machine from source code. You may be interested in building the AtomVM source code if you want to provide bug fixes or enhancements to the VM, or if you want to simply learn more about the platform. In addition, some “downstream” drivers for specific devices may need to be built specifically for the target platform (e.g., ESP32), in which case building the VM from source code is required.

Tip

Many applications do not require building the AtomVM runtime from source code. Instead, you can
download pre-built VM images for platforms such as
ESP32, and use Erlang and Elixir tooling to build and deploy your applications.

The AtomVM virtual machine itself, including the runtime code execution engine, as well as built-in functions and Nifs is implemented in C. The core standard and AtomVM libraries are implemented in Erlang and Elixir.

The native C parts of AtomVM compile to machine code on MacOS, Linux, and FreeBSD platforms. The C code also compiles to run on the ESP32 and STM32 platforms. Typically, binaries for these platforms are created on a UNIX-like environment (MacOS or Linux, currently) using tool-chains provided by device vendors to cross-compile and target specific device architectures.

The Erlang and Elixir parts are compiled to BEAM byte-code using the Erlang (erlc) and Elixir compilers. For information about specific versions of required software, see the Release Notes.

This guide provides information about how to build AtomVM for the various supported platforms (Generic UNIX, ESP32, and STM32).

Attention

In order to build AtomVM AVM files for ESP32 and STM32 platforms, you will also need to build
AtomVM for the Generic UNIX platform of your choice.

Downloading AtomVM

The AtomVM source code is available by cloning the AtomVM github repository:

$ git clone https://github.com/atomvm/AtomVM

See also

Downloading the AtomVM github repository requires the installation of the git program. Consult
your local OS documentation for installation of the git package.

If you want to build a release version of AtomVM, simply checkout the desired release:

$ git checkout v0.6.0-alpha.2

Tip

You may need to refresh the tags if you have already cloned the repository and you want to build a
more recent release version.

$ git pull --tags --rebase

The use of --rebase is necessary if you are in a working branch and have made commits, otherwise
it is optional.

To return to the current master branch use git switch master.

Source code organization

Source code is organized as follows:

	src Contains the core AtomVM virtual machine source code;

	lib Contains the Erlang and Elixir core library source code;

	tools Contains AtomVM tooling, including the PackBEAM executable, as well as build support tooling;

	examples Contains sample programs for demonstration purposes;

	tests Contains test code run as part of test qualification;

	doc Contains documentation source code and content.

The src directory is broken up into the core platform-independent AtomVM library (libAtomVM), and platform-dependent code for each of the supported platforms (Generic UNIX, ESP32, and STM32).

Platform Specific Build Instructions

	Generic UNIX

	ESP32

	STM32

	Raspberry Pi Pico (rp2040)

	WASM (NodeJS or web)

Building for Generic UNIX

The following instructions apply to unix-like environments, including Linux, FreeBSD, DragonFly and MacOS.

Hint

The Generic UNIX is useful for running and testing simple AtomVM programs. Not all of the AtomVM
APIs, specifically, APIs that are dependent on various device integration, are supported on this
platform.

Generic UNIX Build Requirements

The following software is required in order to build AtomVM in generic UNIX systems:

	gcc or llvm tool chains

	cmake

	make

	gperf

	zlib

	Mbed TLS

	Erlang/OTP compiler (erlc)

	Elixir compiler

Consult Release Notes for currently supported versions of required software.

Consult your local OS documentation for instructions about how to install these components.

Generic UNIX Build Instructions

The AtomVM build for generic UNIX systems makes use of the cmake tool for generating make files from the top level AtomVM directory. With CMake, you generally create a separate directory for all output files (make files, generated object files, linked binaries, etc). A common pattern is to create a local build directory, and then point cmake to the parent directory for the root of the source tree:

$ mkdir build
$ cd build
$ cmake ..

This command will create all of the required make files for creating the AtomVM binary, tooling, and core libraries. You can create all of these object using the make command:

$ make -j 8

Tip

You may specify -j <n>, where <n> is the number of CPUs you would like to assign to run the
build in parallel.

Upon completion, the AtomVM executable can be found in the build/src directory.

The AtomVM core Erlang library can be found in the generated libs/atomvmlib.avm AVM file.

Use the install target to install the atomvm command and associated binary files. On most UNIX systems, these artifacts will be installed in the /usr/local directory tree.

Attention

On some systems, you may need to run this target with root or sudo permissions.

$ sudo make install

Once installed, you can use the atomvm command to execute an AtomVM application. E.g.,

$ atomvm /path/to/myapp.avm

For users doing incremental development on the AtomVM virtual machine, you may want to run the AtomVM binary directly instead of installing the VM on your machine. If you do, you will typically need to also specify the path to the AtomVM core Erlang library. For example,

$ cd build
$./src/AtomVM /path/to/myapp.avm ./libs/atomvmlib.avm

Special Note for MacOS users

You may build an Apple Xcode project, for developing, testing, and debugging in the Xcode IDE, by specifying the Xcode generator. For example, from the top level AtomVM directory:

$ mkdir xcode
$ cmake -G Xcode ..
...
$ open AtomVM.xcodeproj

The above commands will build and open an AtomVM project in the Xcode IDE.

Running tests

There are currently two sets of suites of tests for AtomVM:

	Erlang tests (erlang_tests) A set of unit tests for basic Erlang functionality, exercising support BEAM opcodes, built-in functions (Bifs) and native functions (Nifs).

	Library tests, exercising functionality in the core Erlang and Elixir libraries.

To run the Erlang tests, run the test-erlang executable in the tests directory:

$./tests/test-erlang

This will run a suite of several score unit tests. Check the status of the executable after running the tests. A non-zero return value indicates a test failure.

To run the Library tests, run the corresponding AVM module in the tests/libs directory using the AtomVM executable. For example:

$./src/AtomVM ./tests/libs/estdlib/test_estdlib.avm

This will run a suite of several unit tests for the specified library. Check the status of the executable after running the tests. A non-zero return value indicates a test failure.

Tests for the following libraries are supported:

	estdlib

	eavmlib

	alisp

Building for ESP32

Building AtomVM for ESP32 must be done on either a Linux or MacOS build machine.

In order to build a complete AtomVM image for ESP32, you will also need to build AtomVM for the Generic UNIX platform (typically, the same build machine you are suing to build AtomVM for ESP32).

ESP32 Build Requirements

The following software is required in order to build AtomVM for the ESP32 platform:

	Espressif Xtensa tool chains

	Espressif IDF SDK (consult Release Notes for currently supported versions)

	cmake

Instructions for downloading and installing the Espressif IDF SDK and tool chains are outside of the scope of this document. Please consult the IDF SDKGetting Started guide for more information.

ESP32 Build Instructions

To activate the ESP-IDF build environment change directories to the tree root of your local ESP-IDF:

$ cd <ESP-IDF-ROOT-DIR>
$. ./export.sh

Hint

If you followed Espressif’s installation guide the ESP-IDF directory is ${HOME}/esp/esp-idf

Change directories to the src/platforms/esp32 directory under the AtomVM source tree root:

$ cd <atomvm-source-tree-root>
$ cd src/platforms/esp32

Start by updating the default build configuration of local sdkconfig file via the idf.py reconfigure command:

$ idf.py set-target esp32
$ idf.py reconfigure

Tip

For those familiar with esp-idf the build can be customized using menuconfig instead of
reconfigure:

$ idf.py menuconfig

This command will bring up a curses dialog box where you can make adjustments such as not including
AtomVM components that are not desired in a particular build. You can also change the behavior of a
crash in the VM to print the error and reboot, or halt after the error is printed. Extreme caution
should be used when changing any non AtomVM settings. You can quit the program by typing Q.
Save the changes, and the program will exit.

You can now build AtomVM using the build command:

$ idf.py build

This command, once completed, will create the Espressif bootloader, partition table, and AtomVM binary. The last line of the output should read something like the following:

Project build complete. To flash, run this command:
~/.espressif/python_env/idf5.1_py3.11_env/bin/python ~/esp/esp-idf-v5.1/components
/esptool_py/esptool/esptool.py -p (PORT) -b 921600 --before default_reset
--after hard_reset --chip esp32 write_flash --flash_mode dio --flash_size detect
--flash_freq 40m 0x1000 build/bootloader/bootloader.bin 0x8000
build/partition_table/partition-table.bin 0x10000 build/atomvm-esp32.bin
or run 'idf.py -p (PORT) flash'

At this point, you can run idf.py flash to upload the 3 binaries up to your ESP32 device, and in some development scenarios, this is a preferable shortcut.

However, first, we will build a single binary image file containing all of the above 3 binaries, as well as the AtomVM core libraries. See Building a Release Image, below. But first, it is helpful to understand a bit about how the AtomVM partitioning scheme works, on the ESP32.

Running tests for ESP32

Tests for ESP32 are run on the desktop (or CI) using qemu.

Install or compile Espressif’s fork of qemu.
Espressif provides binaries for Linux amd64 and it’s also bundled in espressif/idf:5.1 docker image.

Also install Espressif pytest’s extensions for embedded testing with:

$ cd <ESP-IDF-ROOT-DIR>
$. ./export.sh
$ pip install pytest==7.0.1 \
 pytest-embedded==1.2.5 \
 pytest-embedded-serial-esp==1.2.5 \
 pytest-embedded-idf==1.2.5 \
 pytest-embedded-qemu==1.2.5

Change directory to the src/platforms/esp32/test directory under the AtomVM source tree root:

$ cd <atomvm-source-tree-root>
$ cd src/platforms/esp32/test

Build tests using the build command:

$ idf.py build

Note

This eventually compiles host AtomVM to be able to build and pack erlang test modules.

Run tests using the command:

$ pytest --embedded-services=idf,qemu -s

ESP32 tests are erlang modules located in src/platforms/esp32/test/main/test_erl_sources/ and executed from src/platforms/esp32/test/main/test_main.c.

Flash Layout

The AtomVM Flash memory is partitioned to include areas for the above binary artifacts created from the build, as well areas for runtime information used by the ESP32 and compiled Erlang/Elixir code.

The flash layout is roughly as follows (not to scale):

+-----------------+ ------------- 0x0000
| secure |
| boot | 4KB
| |
+-----------------+ ------------- 0x1000
| | ^
| boot loader | 28KB |
| | |
+-----------------+ |
| partition table | 3KB |
+-----------------+ |
NVS	24KB
+-----------------+	
PHY_INIT	4KB
+-----------------+	AtomVM
AtomVM	
Virtual	1.75MB
Machine	
+-----------------+	
boot.avm	256KB v
+-----------------+ ------------- 0x210000	
	^
main.avm	1MB+
	v
+-----------------+ ------------- end

The following table summarizes the partitions created on the ESP32 when deploying AtomVM:

	Partition

	Offset

	Length

	Description

	Secure Boot

	0x00

	4kB

	Initialization vectors and other data needed for ESP32 secure boot.

	Bootloader

	0x1000

	28kB

	The ESP32 bootloader, as built from the IDF-SDK. AtomVM does not define its own bootloader.

	Partition Table

	0x8000

	3kB

	The AtomVM-defined partition table.

	NVS

	0x9000

	24kB

	Space for non-volatile storage.

	PHY_INIT

	0xF000

	4kB

	Initialization data for physical layer radio signal data.

	AtomVM virtual machine

	0x10000

	1.75mB

	The AtomVM virtual machine (compiled from C code).

	boot.avm

	0x1D0000

	256k

	The AtomVM BEAM library, compiled from Erlang and Elixir files in the AtomVM source tree.

	main.avm

	0x210000

	1mB

	The user application. This is where users flash their compiled Erlang/Elixir code

The boot.avm and main.avm partitions

The boot.avm and main.avm partitions are intended to store Erlang/Elixir libraries (compiled down to BEAM files, and assembled as AVM files).

The boot.avm partition is intended for core Erlang/Elixir libraries that are built as part of the AtomVM build. The release image of AtomVM (see below) includes both the AtomVM virtual machine and the boot.avm partition, which includes the BEAM files from the estdlib and eavmlib libraries.

In contrast, the main.avm partition is intended for user applications. Currently, the main.avm partition starts at address 0x210000, and it is to that location to which application developers should flash their application AVM files.

The AtomVM search path for BEAM modules starts in the main.avm partition and falls back to boot.avm. Users should not have a need to override any functionality in the boot.avm partition, but if necessary, a BEAM module of the same name in the main.avm partition will be loaded instead of the version in the boot.avm partition.

Warning

The location of the main.avm partition may change over time, depending on the relative sizes of the AtomVM binary
and boot.avm partitions.

Building a Release Image

The <atomvm-source-tree-root>/tools/release/esp32 directory contains the mkimage.sh script that can be used to create a single AtomVM image file, which can be distributed as a release, allowing application developers to develop AtomVM applications without having to build AtomVM from scratch.

Attention

Before running the mkimage.sh script, you must have a complete build of both the esp32 project, as well as a full
build of the core Erlang libraries in the libs directory. The script configuration defaults to assuming that the
core Erlang libraries will be written to the build/libs directory in the AtomVM source tree. You should pass the
--build_dir <path> option to the mkimage.sh script, with <path> pointing to your AtomVM build directory, if
you target a different build directory when running CMake.

Running this script will generate a single atomvm-<sha>.img file in the build directory of the esp32 source tree, where <sha> is the git hash of the current checkout. This image contains the ESP32 bootloader, AtomVM executable, and the eavmlib and estdlib Erlang libraries in one file, which can then be flashed to address 0x1000 for the esp32. The bootloader address varies for other chip variants. See the flashing a binary image to ESP32 section of the Getting Started Guide for a chart with the bootloader offset address of each model.

The mkimage.sh script is run from the src/platform/esp32 directory as follows:

$./build/mkimage.sh
Writing output to /home/joe/AtomVM/src/platforms/esp32/build/atomvm-esp32-0.6.0
-dev+git.602e6bc.img
===
Wrote bootloader at offset 0x1000 (4096)
Wrote partition-table at offset 0x8000 (32768)
Wrote AtomVM Virtual Machine at offset 0x10000 (65536)
Wrote AtomVM Core BEAM Library at offset 0x110000 (1114112)

Users can then use the esptool.py directly to flash the entire image to the ESP32 device, and then flash their applications to the main.app partition at address 0x210000,

But first, it is a good idea to erase the flash, e.g.,

$ esptool.py --chip esp32 --port /dev/ttyUSB0 erase_flash
esptool.py v2.1
Connecting........_
Chip is ESP32D0WDQ6 (revision 1)
Uploading stub...
Running stub...
Stub running...
Erasing flash (this may take a while)...
Chip erase completed successfully in 5.4s
Hard resetting...

Flashing Release Images

After preparing a release image you can use the flashimage.sh, which is generated with each build that will flash the full image using the correct flash offset for the chip the build was configured for.

$./build/flashimage.sh

To perform this action manually you can use the ./build/flash.sh tool (or esptool.py directly, if you prefer):

$ FLASH_OFFSET=0x1000 ./build/flash.sh ./build/atomvm-esp32-0.6.0-beta-0.img
esptool.py v2.8-dev
Serial port /dev/tty.SLAB_USBtoUART
Connecting........_
Chip is ESP32D0WDQ6 (revision 1)
Features: WiFi, BT, Dual Core, Coding Scheme None
Crystal is 40MHz
MAC: 30:ae:a4:1a:37:d8
Uploading stub...
Running stub...
Stub running...
Changing baud rate to 921600
Changed.
Configuring flash size...
Auto-detected Flash size: 4MB
Wrote 1163264 bytes at 0x00001000 in 15.4 seconds (603.1 kbit/s)...
Hash of data verified.
Leaving...
Hard resetting via RTS pin...

Caution

Flashing the full AtomVM image will delete all entries in non-volatile storage. Only flash the full image if you
have a way to recover and re-write any such data, if you need to retain it.

Flashing Applications

Applications can be flashed using the flash.sh script in the esp32 build directory:

$./build/flash.sh ../../../build/examples/erlang/esp32/blink.avm
%%
%% Flashing examples/erlang/esp32/blink.avm (size=4k)
%%
esptool.py v2.8-dev
Serial port /dev/tty.SLAB_USBtoUART
Connecting........_
Chip is ESP32D0WDQ6 (revision 1)
Features: WiFi, BT, Dual Core, Coding Scheme None
Crystal is 40MHz
MAC: 30:ae:a4:1a:37:d8
Uploading stub...
Running stub...
Stub running...
Changing baud rate to 921600
Changed.
Configuring flash size...
Auto-detected Flash size: 4MB
Wrote 16384 bytes at 0x00210000 in 0.2 seconds (611.7 kbit/s)...
Hash of data verified.
Leaving...
Hard resetting via RTS pin...

Tip

Since the Erlang core libraries are flashed to the ESP32 device, it is not necessary to include core libraries in
your application AVM files. Users may be interested in using downstream development tools, such as the Elixir
ExAtomVM Mix task, or the Erlang
AtomVM Rebar3 Plugin for doing day-to-day development of
applications for the AtomVM platform.

Flashing the core libraries

If you are doing development work on the core Erlang/Elixir libraries and wish to test changes that do not involve the C code in the core VM you may flash atomvmlib.avm to the avm.lib partition (offset 0x1D0000) by using the flash.sh script in the esp32 build directory as follows:

$ build/flash.sh -l ../../../build/libs/atomvmlib.avm
%%
%% Flashing ../../../build/libs/atomvmlib.avm (size=116k)
%%
esptool.py v4.5.1
Serial port /dev/ttyUSB0
Connecting.....
Detecting chip type... Unsupported detection protocol, switching and trying
again...
Connecting.....
Detecting chip type... ESP32
Chip is ESP32-D0WD (revision v1.0)
Features: WiFi, BT, Dual Core, 240MHz, VRef calibration in efuse, Coding Scheme
None
Crystal is 40MHz
MAC: 1a:57:c5:7f:ac:5b
Uploading stub...
Running stub...
Stub running...
Changing baud rate to 921600
Changed.
Configuring flash size...
Auto-detected Flash size: 8MB
Flash will be erased from 0x001d0000 to 0x001ecfff...
Wrote 131072 bytes at 0x001d0000 in 1.8 seconds (582.1 kbit/s)...
Hash of data verified.

Leaving...
Hard resetting via RTS pin...

Adding custom Nifs, Ports, and third-party components

While AtomVM is a functional implementation of the Erlang virtual machine, it is nonetheless designed to allow developers to extend the VM to support additional integrations with peripherals and protocols that are not otherwise supported in the core virtual machine.

AtomVM supports extensions to the VM via the implementation of custom native functions (Nifs) and processes (AtomVM Ports), allowing users to extend the VM for additional functionality, and you can add your own custom Nifs, ports, and additional third-party components to your ESP32 build by adding them to the components directory, and the ESP32 build will compile them automatically.

See also

For more information about building components for the IDF SDK, consult the
IDF SDK Build System
documentation.

The instructions for adding custom Nifs and ports differ in slight detail, but are otherwise quite similar. In general, they involve:

	Adding the custom Nif or Port to the components directory of the AtomVM source tree;

	Adding the component to the corresponding main/component_nifs.txt or main/component_ports.txt files;

	Building the AtomVM binary.

Attention

The Espressif SDK and tool chains do not, unfortunately, support dynamic loading of shared libraries and dynamic
symbol lookup. In fact, dynamic libraries are not supported at all on the ESP32 using the IDF SDK; instead, any
code that is needed at runtime must be statically linked into the application.

Custom Nifs and Ports are available through third parties. Follow the instructions provided with these custom components for detailed instruction for how to add the Nif or Port to your build.

More detailed instructions follow, below, for implementing your own Nif or Port.

Adding a custom AtomVM Nif

To add support for a new peripheral or protocol using custom AtomVM Nif, you need to do the following:

	Choose a name for your nif (e.g, “my_nif”). Call this <moniker>.

	In your source code, implement the following two functions:

	void <moniker>_nif_init(GlobalContext *global);

	This function will be called once, when the application is started.

	const struct Nif *<moniker>_nif_get_nif(const char *nifname);

	This function will be called to locate the Nif during a function call.
Example:

 void my_nif_init(GlobalContext *global);
 const struct Nif *my_nif_get_nif(const char *nifname);

Note

Instructions for implementing Nifs is outside of the scope of this document.

	Add your <moniker> to the main/component_nifs.txt file in the src/platforms/esp32 directory.

Attention

The main/component_nifs.txt file will not exist until after the first clean build.

Adding a custom AtomVM Port

To add support for a new peripheral or protocol using an AtomVM port, you need to do the following:

	Choose a name for your port (e.g, “my_port”). Call this <moniker>.

	In your source code, implement the following two functions:

	void <moniker>_init(GlobalContext *global);

	This function will be called once, when the application is started.

	Context *<moniker>_create_port(GlobalContext *global, term opts);

	This function will be called to locate the Nif during a function call.
Example:

 void my_port_init(GlobalContext *global);
 Context *my_port_create_port(GlobalContext *global, term opts);

Note

Instructions for implementing Ports is outside of the scope of this document.

	Add your <moniker> to the main/component_ports.txt file in the src/platforms/esp32 directory.

Attention

The main/component_ports.txt file will not exist until after the first clean build.

Building for STM32

STM32 Prerequisites

The following software is required to build AtomVM for the STM32 platform:

	11.3 ARM toolchain (or compatible with your system)

	libopencm3 version 0.8.0

	cmake

	make

	git

	python

	Erlang/OTP escript

Note

AtomVM tests this build on the latest Ubuntu github runner.

Setup libopencm3

Before building for the first time you need to have a compiled clone of the libopencm3 libraries, from inside the AtomVM/src/platforms/stm32 directory:

$ git clone -b v0.8.0 https://github.com/libopencm3/libopencm3.git
$ cd libopencm3 && make -j4 && cd ..

Tip

You can put libopencm3 wherever you want on your PC as long as you update LIBOPENCM3_DIR to point to it. This
example assumes it has been cloned into /opt/libopencm3 and built. From inside the AtomVM/src/platforms/stm32
directory:

$ cmake -DCMAKE_TOOLCHAIN_FILE=../cmake/arm-toolchain.cmake \
-DLIBOPENCM3_DIR=/opt/libopencm3 ..

Build AtomVM with cmake toolchain file

$ mkdir build
$ cd build
$ cmake -DCMAKE_TOOLCHAIN_FILE=../cmake/arm-toolchain.cmake ..
$ make

Changing the target device

The default build is based on the STM32F4Discovery board chip (stm32f407vgt6). If you want to target a different
chip, pass the -DDEVICE flag when invoking cmake. For example, to use the BlackPill V2.0, pass -DDEVICE=stm32f411ceu6. At this time any STM32F4 or STM32F7 device with 512KB or more of on package flash should work with AtomVM. If an unsupported device is passed with the DEVICE parameter the configuration will fail. For devices with either 512KB or 768KB of flash the available application flash space will be limited to 128KB. Devices with only 512KB of flash may also suffer from slightly reduced performance because the compiler must optimize for size rather than performance.

Attention

For devices with only 512KB of flash the application address is different and must be adjusted when flashing your
application with st-flash, or using the recommended atomvm_rebar3_plugin. The application address for these
devices is 0x8060000.

Configuring the Console

The default build for any DEVICE will use USART2 and output will be on PA2. This default will work well for most Discovery and generic boards that do not have an on-board TTL to USB-COM support (including the stm32f411ceu6 A.K.A. BlackPill V2.0). For Nucleo boards that do have on board UART to USB-COM support you may pass the cmake parameter -DBOARD=nucleo to have the correct USART and TX pins configured automatically. The Nucleo-144 series use USART3 and PD8, while the supported Nucleo-64 boards use USART2, but passing the BOARD parameter along with DEVICE will configure the correct USART for your model. If any other boards are discovered to have on board USB UART support pull requests, or opening issues with the details, are more than welcome.

Example to configure a NUCLEO-F429ZI:

$ cmake -DCMAKE_TOOLCHAIN_FILE=../cmake/arm-toolchain.cmake -DDEVICE=stm32f429zit6 \
-DBOARD=nucleo

The AtomVM system console USART may also be configured to a specific uart peripheral. Pass one of the parameters from the chart below with the cmake option -DAVM_CFG_CONSOLE=CONSOLE_#, using the desired console parameter in place of CONSOLE_#. Not all UARTs are available on every supported board, but most will have several options that are not already used by other on board peripherals. Consult your data sheets for your device to select an appropriate console.

	Parameter

	USART

	TX Pin

	AtomVM Default

	Nucleo-144

	Nucleo-64

	CONSOLE_1

	USART1

	PA9

	

	

	

	CONSOLE_2

	USART2

	PA2

	✅

	

	✅

	CONSOLE_3

	USART3

	PD8

	

	✅

	

	CONSOLE_4

	UART4

	PC10

	

	

	

	CONSOLE_5

	UART5

	PC12

	

	

	

	CONSOLE_6

	USART6

	PC6

	

	

	

	CONSOLE_7

	UART7

	PF7

	

	

	

	CONSOLE_8

	UART8

	PJ8

	

	

	

Configure STM32 logging with cmake

The default maximum log level is LOG_INFO. To change the maximum level displayed pass -DAVM_LOG_LEVEL_MAX="{level}" to cmake, with one of LOG_ERROR, LOG_WARN, LOG_INFO, or LOG_DEBUG (listed from least to most verbose). Log messages can be completely disabled by using -DAVM_LOG_DISABLE=on.

For log entries colorized by log level pass -DAVM_ENABLE_LOG_COLOR=on to cmake. With color enable there is a very small performance penalty (~1ms per message printed), the log entries are colored as follows:

	Message Level

	Color

	ERROR

	Red

	WARN

	Orange

	INFO

	Green

	DEBUG

	Blue

By default only ERROR messages contain file and line number information. This can be included with all log entries by passing -DAVM_ENABLE_LOG_LINES=on to cmake, but it does incur a significant performance penalty and is only suggested for debugging during development.

Console Printing on STM32

AtomVM is built with standard newlib to support long long integers (signed and unsigned). If you are building for a device with extremely limited flash space the nano version of newlib can be used instead. This may be done by passing -DAVM_NEWLIB_NANO=on. If the nano newlib is used logs will be automatically disabled, this is because many of the VM low level log messages will include %ull formatting and will cause buffer overflows and crash the VM if logging is not disabled for nano newlib builds. The total flash savings of using nano newlib and disabling logs is just under 40kB.

By default, stdout and stderr are printed on USART2. On the STM32F4Discovery board, you can see them
using a TTL-USB with the TX pin connected to board’s pin PA2 (USART2 RX). Baudrate is 115200 and serial transmission
is 8N1 with no flow control.

See also

If building for a different target USART may be configure as explained above in
Configuring the Console.

Configuring deployment builds for STM32

After your application has been tested (and debugged) and is ready to put into active use you may want to tune the build of AtomVM. For instance disabling logging with -DAVM_LOG_DISABLE=on as a cmake configuration option may result in slightly better performance. This will have no affect on the console output of your application, just disable low level log messages from the AtomVM system. You may also want to enabling automatic reboot in the case that your application ever exits with a return other than ok. This can be enabled with the cmake option -DAVM_CONFIG_REBOOT_ON_NOT_OK=on.

Building for Raspberry Pi Pico

Pico Prerequisites

	cmake

	ninja

	Erlang/OTP

	Elixir (optional)

AtomVM build steps (Pico)

$ cd src/platforms/rp2040/
$ mkdir build
$ cd build
$ cmake .. -G Ninja
$ ninja

Tip

You may want to build with option AVM_REBOOT_ON_NOT_OK so Pico restarts on error.

AtomVM build steps (Pico-W)

$ cd src/platforms/rp2040/
$ mkdir build
$ cd build
$ cmake .. -G Ninja -DPICO_BOARD=pico_w
$ ninja

Tip

You may want to build with option AVM_REBOOT_ON_NOT_OK so Pico restarts on error.

The default build configuration allows the device to be re-flashed with the atomvm_rebar3_plugin atomvm pico_flash task or restarting the application after exiting using picotool. This behaviour can be changed to hang the CPU when the application exits, so that power must be cycled to restart, and BOOTSEL must be held when power on to flash a new application. To disable software resets use -DAVM_WAIT_BOOTSEL_ON_EXIT=off when configuring cmake.

The 20 second default timeout for a USB serial connection can be changed using option AVM_USB_WAIT_SECONDS. The device can also be configured to wait indefinitely for a serial connection using the option AVM_WAIT_FOR_USB_CONNECT=on.

libAtomVM build steps for Pico

Build of standard libraries is part of the generic unix build.

From the root of the project:

$ mkdir build
$ cd build
$ cmake .. -G Ninja
$ ninja

Running tests for Pico

Tests for Pico/RP2040 are run on the desktop (or CI) using rp2040js.
Running tests currently require nodejs 20.

Change directory to the src/platforms/rp2040/tests directory under the AtomVM source tree root:

$ cd <atomvm-source-tree-root>
$ cd src/platforms/rp2040/tests
$

Install the emulator and required Javascript dependencies:

$ npm install

We are assuming tests were built as part of regular build of AtomVM. Run them with the commands:

$ npx tsx run-tests.ts ../build/tests/rp2040_tests.uf2 \
../build/tests/test_erl_sources/rp2040_test_modules.uf2

Building for emscripten

Two different builds are possible, depending on link options: for NodeJS and
for the web browser.

WASM Prerequisites

	emscripten SDK

	cmake

	Erlang/OTP

	Elixir (optional)

Building for NodeJS

This is the default. Execute the following commands:

$ cd src/platforms/emscripten/
$ mkdir build
$ cd build
$ emcmake cmake ..
$ emmake make -j

AtomVM can then be invoked as on Generic Unix with node:

$ node ./src/AtomVM.js

Running tests with NodeJS

NodeJS build currently does not have dedicated tests. However, you can run
AtomVM library tests that do not depend on unimplemented APIs.

Build them first by building AtomVM for Generic Unix (see above.)
Then execute the tests with:

$ cd src/platforms/emscripten/build/
$ node ./src/AtomVM.js ../../../../build/tests/libs/eavmlib/test_eavmlib.avm
$ node ./src/AtomVM.js ../../../../build/tests/libs/alisp/test_alisp.avm

Building for the web

Execute the following commands:

$ cd src/platforms/emscripten/
$ mkdir build
$ cd build
$ emcmake cmake .. -DAVM_EMSCRIPTEN_ENV=web
$ emmake make -j

Running tests with Cypress

AtomVM WebAssembly port on the web uses SharedArrayBuffer feature which is
restricted by browsers. Tests require an HTTP server that returns the proper
HTTP headers.

Additionally, tests require Cypress. Plus, because of
a current bug in Cypress,
tests only run with Chrome-based browsers except Electron (Chromium, Chrome or Edge).

Build first AtomVM for Generic Unix (see above). This will include the web
server.

Then run the web server with:

$ cd build
$./src/AtomVM examples/emscripten/wasm_webserver.avm

In another terminal, compile specific test modules that are not part of examples.

$ cd src/platforms/emscripten/build/
$ make emscripten_erlang_test_modules

Then run tests with Cypress with:

$ cd src/platforms/emscripten/tests/
$ npm install cypress
$ npx cypress run --browser chrome

You can alternatively specify: chromium or edge depending on what is installed.

Alternatively, on Linux, you can run tests with docker:

$ cd src/platforms/emscripten/tests/
$ docker run --network host -v $PWD:/mnt -w /mnt cypress/included:12.17.1 \
--browser chrome

Or you can open Cypress to interactively run selected test suites.

$ cd src/platforms/emscripten/tests/
$ npm install cypress
$ npx cypress open

AtomVM Internals

What is an Abstract Machine?

AtomVM is an “abstract” or “virtual” machine, in the sense that it simulates, in software, what a physical machine would do when executing machine instructions. In a normal computing machine (e.g., a desktop computer), machine code instructions are generated by a tool called a compiler, allowing an application developer to write software in a high-level language (such as C). (In rare cases, application developers will write instructions in assembly code, which is closer to the actual machine instructions, but which still requires a translation step, called “assembly”, to translate the assembly code into actual machine code.) Machine code instructions are executed in hardware using the machine’s Central Processing Unit (CPU), which is specifically designed to efficiently execute machine instructions targeted for the specific machine architecture (e.g., Intel x86, ARM, Apple M-series, etc.) As a result, machine code instructions are typically tightly packed, encoded instructions that require minimum effort (on the part of the machine) to unpack an interpret. These a low level instructions unsuited for human interpretation, or at least for most humans.

AtomVM and virtual machines generally (including, for example, the Java Virtual Machine) perform a similar task, except that i) the instructions are not machine code instructions, but rather what are typically called “bytecode” or sometimes “opcode” instructions; and ii) the generated instructions are themselves executed by a runtime execution engine written in software, a so-called “virtual” or sometimes “abstract” machine. These bytecode instructions are generated by a compiler tailored specifically for the virtual machine. For example, the javac compiler is used to translate Java source code into Java VM bytecode, and the erlc compiler is used to translate Erlang source code into BEAM opcodes.

AtomVM is an abstract machine designed to implement the BEAM instruction set, the 170+ (and growing) set of virtual machine instructions implemented in the Erlang/OTP BEAM.

Note

There is no abstract specification of the BEAM abstract machine and instruction set. Instead, the BEAM
implementation by the Erlang/OTP team is the definitive specification of its behavior.

At a high level, the AtomVM abstract machine is responsible for:

	Loading and execution of the BEAM opcodes encoded in one or more BEAM files;

	Managing calls to internal and external functions, handling return values, exceptions, and crashes;

	Creation and destruction of Erlang “processes” within the AtomVM memory space, and communication between processes via message passing;

	Memory management (allocation and reclamation) of memory associated with Erlang “processes”

	Pre-emptive scheduling and interruption of Erlang “processes”

	Execution of user-defined native code (Nifs and Ports)

	Interfacing with the host operating system (or facsimile)

This document provides a description of the AtomVM abstract machine, including its architecture and the major components and data structures that form the system. It is intended for developers who want to get involved in bug fixing or implementing features for the VM, as well as for anyone interested in virtual machine internals targeted for BEAM-based languages, such as Erlang or Elixir.

AtomVM Data Structures

This section describes AtomVM internal data structures that are used to manage the load and runtime state of the virtual machine. Since AtomVM is written in C, this discussion will largely be in the context of native C data structures (i.e., structs). The descriptions will start at a fairly high level but drill down to some detail about the data structures, themselves. This narrative is important, because memory is limited on the target architectures for AtomVM (i.e., micro-controllers), and it is important to always be aware of how memory is organized and used in a way that is as space-efficient as possible.

The GlobalContext

We start with the top level data structure, the GlobalContext struct. This object is a singleton object (currently, and for the foreseeable future), and represents the root of all data structures in the virtual machine. It is in essence in 1..1 correspondence with instances of the virtual machine.

	
struct GlobalContext

	Collaboration diagram for GlobalContext:

[image: digraph { graph [bgcolor="#00000000"] node [shape=rectangle style=filled fillcolor="#FFFFFF" font=Helvetica padding=2] edge [color="#1414CE"] "18" [label="SpinLock" tooltip="SpinLock"] "9" [label="ResourceType" tooltip="ResourceType"] "12" [label="Module" tooltip="Module"] "10" [label="ListHead" tooltip="ListHead"] "7" [label="RefcBinaryQueueItem" tooltip="RefcBinaryQueueItem"] "1" [label="GlobalContext" tooltip="GlobalContext" fillcolor="#BFBFBF"] "14" [label="ModuleFilename" tooltip="ModuleFilename"] "6" [label="HNodeGroup" tooltip="HNodeGroup"] "17" [label="TimerList" tooltip="TimerList"] "15" [label="LiteralEntry" tooltip="LiteralEntry"] "3" [label="MailboxMessage" tooltip="MailboxMessage"] "2" [label="MessageQueueItem" tooltip="MessageQueueItem"] "16" [label="AtomsHashTable" tooltip="AtomsHashTable"] "8" [label="RefcBinary" tooltip="RefcBinary"] "4" [label="AtomTable" tooltip="AtomTable"] "13" [label="ExportedFunction" tooltip="ExportedFunction"] "11" [label="SyncList" tooltip="SyncList"] "5" [label="HNode" tooltip="HNode"] "9" -> "1" [dir=forward tooltip="usage"] "9" -> "10" [dir=forward tooltip="usage"] "12" -> "13" [dir=forward tooltip="usage"] "12" -> "14" [dir=forward tooltip="usage"] "12" -> "15" [dir=forward tooltip="usage"] "12" -> "10" [dir=forward tooltip="usage"] "10" -> "10" [dir=forward tooltip="usage"] "7" -> "8" [dir=forward tooltip="usage"] "7" -> "7" [dir=forward tooltip="usage"] "1" -> "2" [dir=forward tooltip="usage"] "1" -> "4" [dir=forward tooltip="usage"] "1" -> "7" [dir=forward tooltip="usage"] "1" -> "11" [dir=forward tooltip="usage"] "1" -> "12" [dir=forward tooltip="usage"] "1" -> "16" [dir=forward tooltip="usage"] "1" -> "17" [dir=forward tooltip="usage"] "1" -> "18" [dir=forward tooltip="usage"] "1" -> "10" [dir=forward tooltip="usage"] "6" -> "5" [dir=forward tooltip="usage"] "6" -> "6" [dir=forward tooltip="usage"] "17" -> "10" [dir=forward tooltip="usage"] "3" -> "3" [dir=forward tooltip="usage"] "2" -> "3" [dir=forward tooltip="usage"] "2" -> "2" [dir=forward tooltip="usage"] "16" -> "5" [dir=forward tooltip="usage"] "8" -> "9" [dir=forward tooltip="usage"] "8" -> "10" [dir=forward tooltip="usage"] "4" -> "5" [dir=forward tooltip="usage"] "4" -> "6" [dir=forward tooltip="usage"] "11" -> "10" [dir=forward tooltip="usage"] "5" -> "5" [dir=forward tooltip="usage"] }]

Public Members

	
struct ListHead ready_processes

	

	
struct ListHead running_processes

	

	
struct ListHead waiting_processes

	

	
SpinLock processes_spinlock

	

	
struct MessageQueueItem *message_queue

	

	
struct RefcBinaryQueueItem *refc_queue

	

	
struct SyncList refc_binaries

	

	
struct SyncList processes_table

	

	
struct SyncList registered_processes

	

	
struct SyncList listeners

	

	
struct SyncList resource_types

	

	
struct SyncList select_events

	

	
int32_t last_process_id

	

	
struct AtomTable *atom_table

	

	
struct AtomsHashTable *modules_table

	

	
RWLock *modules_lock

	

	
Module **modules_by_index

	

	
int loaded_modules_count

	

	
struct SyncList avmpack_data

	

	
struct TimerList timer_list

	

	
SpinLock timer_spinlock

	

	
unsigned long long ref_ticks

	

	
SpinLock ref_ticks_spinlock

	

	
int online_schedulers

	

	
int running_schedulers

	

	
bool waiting_scheduler

	

	
Mutex *schedulers_mutex

	

	
CondVar *schedulers_cv

	

	
bool scheduler_stop_all

	

	
SpinLock env_spinlock

	

	
void *platform_data

	

Note

Given the design of the system, it is theoretically possible to run multiple instances of the AtomVM in one process
space. However, no current deployments make use of this capability.

In order to simplify the exposition of this structure, we break the fields of the structure into manageable subsets:

	Process management – fields associated with the management of Erlang (lightweight) “processes”

	Atoms management – fields associated with the storage of atoms

	Module Management – fields associated with the loading of BEAM modules

	Reference Counted Binaries – fields associated with the storage of binary data shared between processes

	Other data structures

These subsets are described in more detail below.

Warning

Not all fields of the GlobalContext structure are described in this document.

Process Management

As a BEAM implementation, AtomVM must be capable of spawning and managing the lifecycle of Erlang lightweight processes. Each of these processes is encapsulated in the Context structure, described in more detail in subsequent sections.

The GlobalContext structure maintains a list of running processes and contains the following fields for managing the running Erlang processes in the VM:

	processes_table the list of all processes running in the system

	waiting_processes the subset of processes that are waiting to run (e.g., waiting for a message or timeout condition).

	running_processes the subset of processes that are currently running.

	ready_processes the subset of processes that are ready to run.

Processes are in either waiting_processes, running_processes or ready_processes. A running process can technically be moved to the ready list while running to signify that if it yields, it will be eligible for being run again, typically if it receives a message. Also, native handlers (ports) are never moved to the running_processes list but are in the waiting_processes list when they run (and can be moved to ready_processes list if they are made ready while running).

Each of these fields are doubly-linked list (ring) structures, i.e, structs containing a prev and next pointer field. The Context data structure begins with two such structures, the first of which links the Context struct in the processes_table field, and the second of which is used for either the waiting_processes, the ready_processes or the running_processes field.

Tip

The C programming language treats structures in memory as contiguous sequences of fields of given types. Structures
have no hidden preamble data, such as you might find in C++ or who knows what in even higher level languages. The
size of a struct, therefore, is determined simply by the size of the component fields.

The relationship between the GlobalContext fields that manage BEAM processes and the Context data structures that represent the processes, themselves, is illustrated in the following diagram:

[image: GlobalContext Processes]

See also

The Context data structure is described in more detail below.

Contexts

Danger

This section is under construction

	
struct Context

	Collaboration diagram for Context:

[image: digraph { graph [bgcolor="#00000000"] node [shape=rectangle style=filled fillcolor="#FFFFFF" font=Helvetica padding=2] edge [color="#1414CE"] "23" [label="SpinLock" tooltip="SpinLock"] "19" [label="ResourceType" tooltip="ResourceType"] "6" [label="Module" tooltip="Module"] "5" [label="ListHead" tooltip="ListHead"] "11" [label="HeapFragment" tooltip="HeapFragment"] "17" [label="RefcBinaryQueueItem" tooltip="RefcBinaryQueueItem"] "12" [label="GlobalContext" tooltip="GlobalContext"] "8" [label="ModuleFilename" tooltip="ModuleFilename"] "16" [label="HNodeGroup" tooltip="HNodeGroup"] "22" [label="TimerList" tooltip="TimerList"] "9" [label="LiteralEntry" tooltip="LiteralEntry"] "3" [label="MailboxMessage" tooltip="MailboxMessage"] "10" [label="Heap" tooltip="Heap"] "1" [label="Context" tooltip="Context" fillcolor="#BFBFBF"] "13" [label="MessageQueueItem" tooltip="MessageQueueItem"] "21" [label="AtomsHashTable" tooltip="AtomsHashTable"] "18" [label="RefcBinary" tooltip="RefcBinary"] "2" [label="Mailbox" tooltip="Mailbox"] "14" [label="AtomTable" tooltip="AtomTable"] "7" [label="ExportedFunction" tooltip="ExportedFunction"] "4" [label="TimerListItem" tooltip="TimerListItem"] "20" [label="SyncList" tooltip="SyncList"] "15" [label="HNode" tooltip="HNode"] "19" -> "12" [dir=forward tooltip="usage"] "19" -> "5" [dir=forward tooltip="usage"] "6" -> "7" [dir=forward tooltip="usage"] "6" -> "8" [dir=forward tooltip="usage"] "6" -> "9" [dir=forward tooltip="usage"] "6" -> "5" [dir=forward tooltip="usage"] "5" -> "5" [dir=forward tooltip="usage"] "11" -> "11" [dir=forward tooltip="usage"] "17" -> "18" [dir=forward tooltip="usage"] "17" -> "17" [dir=forward tooltip="usage"] "12" -> "13" [dir=forward tooltip="usage"] "12" -> "14" [dir=forward tooltip="usage"] "12" -> "17" [dir=forward tooltip="usage"] "12" -> "20" [dir=forward tooltip="usage"] "12" -> "6" [dir=forward tooltip="usage"] "12" -> "21" [dir=forward tooltip="usage"] "12" -> "22" [dir=forward tooltip="usage"] "12" -> "23" [dir=forward tooltip="usage"] "12" -> "5" [dir=forward tooltip="usage"] "16" -> "15" [dir=forward tooltip="usage"] "16" -> "16" [dir=forward tooltip="usage"] "22" -> "5" [dir=forward tooltip="usage"] "3" -> "3" [dir=forward tooltip="usage"] "10" -> "11" [dir=forward tooltip="usage"] "1" -> "1" [dir=forward tooltip="usage"] "1" -> "2" [dir=forward tooltip="usage"] "1" -> "4" [dir=forward tooltip="usage"] "1" -> "6" [dir=forward tooltip="usage"] "1" -> "10" [dir=forward tooltip="usage"] "1" -> "12" [dir=forward tooltip="usage"] "1" -> "5" [dir=forward tooltip="usage"] "13" -> "3" [dir=forward tooltip="usage"] "13" -> "13" [dir=forward tooltip="usage"] "21" -> "15" [dir=forward tooltip="usage"] "18" -> "19" [dir=forward tooltip="usage"] "18" -> "5" [dir=forward tooltip="usage"] "2" -> "3" [dir=forward tooltip="usage"] "14" -> "15" [dir=forward tooltip="usage"] "14" -> "16" [dir=forward tooltip="usage"] "4" -> "5" [dir=forward tooltip="usage"] "20" -> "5" [dir=forward tooltip="usage"] "15" -> "15" [dir=forward tooltip="usage"] }]

Public Members

	
GlobalContext *global

	

	
Heap heap

	

	
term *e

	

	
term x[16 + 1]

	

	
struct ListHead extended_x_regs

	

	
struct ListHead processes_list_head

	

	
struct ListHead processes_table_head

	

	
int32_t process_id

	

	
struct TimerListItem timer_list_head

	

	
struct ListHead monitors_head

	

	
avm_float_t *fr

	

	
size_t min_heap_size

	

	
size_t max_heap_size

	

	
enum HeapGrowthStrategy heap_growth_strategy

	

	
unsigned long cp

	

	
Module *saved_module

	

	
const void *saved_ip

	

	
void *restore_trap_handler

	

	
Mailbox mailbox

	

	
struct ListHead dictionary

	

	
native_handler_f native_handler

	

	
uint64_t reductions

	

	
unsigned int leader

	

	
unsigned int has_min_heap_size

	

	
unsigned int has_max_heap_size

	

	
bool trap_exit

	

	
unsigned int trace_calls

	

	
unsigned int trace_call_args

	

	
unsigned int trace_returns

	

	
unsigned int trace_send

	

	
unsigned int trace_receive

	

	
enum ContextFlags flags

	

	
void *platform_data

	

	
term group_leader

	

	
term bs

	

	
size_t bs_offset

	

	
term exit_reason

	

The Scheduler

In SMP builds, AtomVM runs one scheduler thread per core. Scheduler threads are actually started on demand. The number of scheduler threads can be queried with erlang:system_info/1 and be modified with erlang:system_flag/2. All scheduler threads are considered equal and there is no notion of main thread except when shutting down (main thread is shut down last).

Each scheduler thread picks a ready process and execute it until it yields. Erlang processes yield when they are waiting (for a message) and after a number of reductions elapsed. Native processes yield when they are done consuming messages (when the handler returns).

Once a scheduler thread is done executing a process, if no other thread is waiting into sys_poll_events, it calls sys_poll_events with a timeout that correspond to the time to wait for next execution. If there are ready processes, the timeout is 0. If there is no ready process, this scheduler thread will wait into sys_poll_event and depending on the platform implementation, the CPU usage can drop.

	
void sys_poll_events(GlobalContext *glb, int timeout_ms)

	Poll events (from drivers and select events), with a timeout (in ms), or until sys_signal is called.

Depending on platforms, check all open file descriptors/queues and call drivers that should send messages to contexts (which will unblock them). With SMP builds, this function can be called from any scheduler.

If selectable events are supported on the platform, this function should also:
	call select_event_destroy on select events that have close set to 1

	include the set of ErlNifEvent that are marked for read or write in the select set, and if they are selected, call select_event_notify to send the notification.

select_event_count_and_destroy_closed defined in resources.h can be used to process closed select events.

	Parameters:

	
	glb – the global context.

	timeout_ms – the number of ms to wait, SYS_POLL_EVENTS_WAIT_FOREVER to wait forever.

If there already is one thread in sys_poll_events, other scheduler threads pick the next ready process and if there is none, wait. Other scheduler threads can also interrupt the wait in sys_poll_events if a process is made ready to run. They do so using platform function sys_signal.

	
void sys_signal(GlobalContext *glb)

	Interrupt the wait in sys_poll_events.

This function should signal the thread that is waiting in sys_poll_events so it returns before the timeout. It is mostly used for SMP builds, but also to abort sleep from driver callbacks on FreeRTOS.

Please note that this function may be called while no thread is waiting in sys_poll_events and this should have no effect. This function is called in scheduler loop (internal function scheduler_run0) and when scheduling processes.

	Parameters:

	
	glb – the global context.

Tasks and synchronization mechanisms

AtomVM SMP builds run on operating or runtime systems implementing tasks (FreeRTOS SMP on ESP32, Unix and WebAssembly) as well as on systems with no task implementation (Raspberry Pi Pico).

On runtime systems with tasks, each scheduler thread is implemented as a task. On Pico, a scheduler thread runs on Core 0 and another one runs on Core 1, and they are effectively pinned to each core.

For synchronization purposes, AtomVM uses mutexes, condition variables, RW locks, spinlocks and Atomics.

Availability of RW Locks and atomics are verified at compile time using detection of symbols for RW Locks and ATOMIC_*_LOCK_FREE C11 macros for atomics.

Mutexes and condition variables are provided by the SDK or the runtime system. If RW Locks are not available, AtomVM uses mutexes. Atomics are not available on Pico and are replaced by critical sections. Spinlocks are implemented by AtomVM on top of Atomics, or using mutexes on Pico.

Importantly, locking synchronization mechanisms (mutexes, RW locks, spinlocks) are not interrupt-safe. Interrupt service routines must not try to lock as they could fail forever if interrupted code owns the lock. Atomics, including emulation on Pico, are interrupt-safe.

Drivers can send messages from event callbacks typically called from FreeRTOS tasks using globalcontext_send_message_from_task or port_send_message_from_task functions instead of globalcontext_send_message or port_send_message. These functions try to acquire required locks and if they fail, enqueue sent message in a queue, so it is later processed when the scheduler performs context switching. The functions are undefined if option AVM_DISABLE_TASK_DRIVER is passed. Some platforms do not include support for task drivers. Define AVM_TASK_DRIVER_ENABLED can be checked to determine if these functions are available.

	
void globalcontext_send_message(GlobalContext *glb, int32_t process_id, term t)

	Send a message to a process identified by its id.

Safely send a message to the process, doing nothing is the process cannot be found.

	Parameters:

	
	glb – the global context (that owns the process table).

	process_id – the local process id.

	t – the message to send.

	
void globalcontext_send_message_from_task(GlobalContext *glb, int32_t process_id, enum MessageType type, term t)

	Send a message to a process identified by its id. This variant is to be used from task drivers. It tries to acquire the necessary locks and if it fails, it enqueues the message which will be delivered on the next scheduler context switch.

Safely send a message to the process, doing nothing if the process cannot be found.

	Parameters:

	
	glb – the global context (that owns the process table).

	process_id – the target process id.

	type – the type of message to send, can be NormalMessage or a signal

	t – the message to send.

Mailboxes and signals

Erlang processes receive messages in a mailbox. The mailbox is the interface with other processes.

	
struct Message

	Collaboration diagram for Message:

[image: digraph { graph [bgcolor="#00000000"] node [shape=rectangle style=filled fillcolor="#FFFFFF" font=Helvetica padding=2] edge [color="#1414CE"] "1" [label="Message" tooltip="Message" fillcolor="#BFBFBF"] "2" [label="MailboxMessage" tooltip="MailboxMessage"] "1" -> "2" [dir=forward tooltip="usage"] "2" -> "2" [dir=forward tooltip="usage"] }]

Public Members

	
MailboxMessage base

	

	
term message

	

	
term *heap_end

	

	
term storage[]

	

When a sender process sends a message to a recipient process, the message is first enqueued into an outer mailbox. The recipient process eventually moves all messages from the outer mailbox to the inner mailbox. The reason for the inner and outer mailbox is to use lock-free data structures using atomic CAS operations.

	
struct Mailbox

	Collaboration diagram for Mailbox:

[image: digraph { graph [bgcolor="#00000000"] node [shape=rectangle style=filled fillcolor="#FFFFFF" font=Helvetica padding=2] edge [color="#1414CE"] "2" [label="MailboxMessage" tooltip="MailboxMessage"] "1" [label="Mailbox" tooltip="Mailbox" fillcolor="#BFBFBF"] "2" -> "2" [dir=forward tooltip="usage"] "1" -> "2" [dir=forward tooltip="usage"] }]

Public Members

	
MailboxMessage *outer_first

	

	
MailboxMessage *inner_first

	

	
MailboxMessage *inner_last

	

	
MailboxMessage *receive_pointer

	

	
MailboxMessage *receive_pointer_prev

	

Sometimes, Erlang processes need to query information from other processes but without sending a regular message, for example when using process_info/1,2 nif. This is handled by signals. Signals are special messages that are enqueued in the outer mailbox of a process. Signals are processed by the recipient process when regular messages from the outer mailbox are moved to the inner mailbox. Signal processing code is part of the main loop and transparent to recipient processes. Both native handlers and erlang processes can receive signals. Signals are also used to run specific operation on other processes that cannot be done from another thread. For example, signals are used to perform garbage collection on another process.

When an Erlang process calls a nif that requires such an information from another process such as process_info/1,2, the nif returns a special value and set the Trap flag on the calling process. The calling process is effectively blocked until the other process is scheduled and the information is sent back using another signal message. This mechanism can also be used by nifs that want to block until a condition is true.

	
enum ContextFlags

	Values:

	
enumerator NoFlags = 0

	

	
enumerator WaitingTimeout = 1

	

	
enumerator WaitingTimeoutExpired = 2

	

	
enumerator Running = 4

	

	
enumerator Ready = 8

	

	
enumerator Killed = 16

	

	
enumerator Trap = 32

	

Stacktraces

Stacktraces are computed from information gathered at load time from BEAM modules loaded into the application, together with information in the runtime stack that is maintained during the execution of a program. In addition, if a BEAM file contains a Line chunk, additional information is added to stack traces, including the file name (as defined at compile time), as well as the line number of a function call.

Tip

Adding line information to a BEAM file adds non-trivial memory overhead to applications and should only be used
when necessary (e.g., during the development process). For applications to make the best use of memory in tightly
constrained environments, packagers should consider removing line information all together from BEAM files and rely
instead on logging or other mechanisms for diagnosing problems in the field.

Newcomers to Erlang may find stacktraces slightly confusing, because some optimizations taken by the Erlang compiler and runtime can result in stack frames “missing” from stack traces. For example, tail-recursive function calls, as well as function calls that occur as the last expression in a function clause, don’t involve the creation of frames in the runtime stack, and consequently will not appear in a stacktrace.

Line Numbers

Including file and line number information in stacktraces adds considerable overhead to both the BEAM file data, as well as the memory consumed at module load time. The data structures used to track line numbers and file names are described below and are only created if the associated BEAM file contains a Line chunk.

The line-refs table

The line-refs table is an array of 16-bit integers, mapping line references (as they occur in BEAM instructions) to the actual line numbers in a file. (Internally, BEAM instructions do not reference line numbers directly, but instead are indirected through a line index). This table is stored on the Module structure.

	
struct Module

	Collaboration diagram for Module:

[image: digraph { graph [bgcolor="#00000000"] node [shape=rectangle style=filled fillcolor="#FFFFFF" font=Helvetica padding=2] edge [color="#1414CE"] "1" [label="Module" tooltip="Module" fillcolor="#BFBFBF"] "5" [label="ListHead" tooltip="ListHead"] "3" [label="ModuleFilename" tooltip="ModuleFilename"] "4" [label="LiteralEntry" tooltip="LiteralEntry"] "2" [label="ExportedFunction" tooltip="ExportedFunction"] "1" -> "2" [dir=forward tooltip="usage"] "1" -> "3" [dir=forward tooltip="usage"] "1" -> "4" [dir=forward tooltip="usage"] "1" -> "5" [dir=forward tooltip="usage"] "5" -> "5" [dir=forward tooltip="usage"] }]

Public Members

	
void *import_table

	

	
CodeChunk *code

	

	
void *export_table

	

	
void *local_table

	

	
void *atom_table

	

	
void *fun_table

	

	
void *str_table

	

	
size_t str_table_len

	

	
uint16_t *line_refs

	

	
struct ModuleFilename *filenames

	

	
struct ListHead line_ref_offsets

	

	
const struct ExportedFunction **imported_funcs

	

	
const uint8_t **labels

	

	
void *literals_data

	

	
struct LiteralEntry *literals_table

	

	
int *local_atoms_to_global_table

	

	
void *module_platform_data

	

	
int module_index

	

	
int end_instruction_ii

	

	
unsigned int free_literals_data

	

	
Mutex *mutex

	

This table is populated when the BEAM file is loaded. The table is created from information in the Line chunk in the BEAM file, if it exists. Note that if there is no Line chunk in a BEAM file, this table is not created.

The memory cost of this table is num_line_refs * 2 bytes, for each loaded module, or 0, if there is no Line chunk in the associated BEAM file.

The filenames table

The filenames table is a table of (usually only 1?) file name. This table maps filename indices to ModuleFilename structures, which is essentially a pointer and a length (of type size_t). This table generally only contains 1 entry, the file name of the Erlang source code module from which the BEAM file was generated. This table is stored on the Module structure.

	
struct ModuleFilename

	
Public Members

	
uint8_t *data

	

	
size_t len

	

Note that a ModuleFilename structure points to data directly in the Line chunk of the BEAM file. Therefore, for ports of AtomVM that memory-map BEAM file data (e.g., ESP32), the actual file name data does not consume any memory.

The memory cost of this table is num_filenames * sizeof(struct ModuleFilename), where struct ModuleFilename is a pointer and length, for each loaded module, or 0, if there is no Line chunk in the associated BEAM file.

The line-ref-offsets list

The line-ref-offsets list is a sequence of LineRefOffset structures, where each structure contains a ListHead (for list book-keeping), a 16-bit line-ref, and an unsigned integer value designating the code offset at which the line reference occurs in the code chunk of the BEAM file. This list is stored on the Module structure.

	
struct LineRefOffset

	Collaboration diagram for LineRefOffset:

[image: digraph { graph [bgcolor="#00000000"] node [shape=rectangle style=filled fillcolor="#FFFFFF" font=Helvetica padding=2] edge [color="#1414CE"] "1" [label="LineRefOffset" tooltip="LineRefOffset" fillcolor="#BFBFBF"] "2" [label="ListHead" tooltip="ListHead"] "1" -> "2" [dir=forward tooltip="usage"] "2" -> "2" [dir=forward tooltip="usage"] }]

Public Members

	
struct ListHead head

	

	
unsigned int offset

	

	
uint16_t line_ref

	

This list is populated at code load time. When a line reference is encountered during code loading, a LineRefOffset structure is allocated and added to the line-ref-offsets list. This list is used at a later time to find the line number at which a stack frame is called, in a manner described below.

The memory cost of this list is num_line_refs * sizeof(struct LineRefOffset), for each loaded module, or 0, if there is no Line chunk in the associated BEAM file.

AtomVM WebAssembly port

WebAssembly or Wasm port of AtomVM relies on Emscripten SDK and library. Even when SMP is disabled (with -DAVM_DISABLE_SMP=On), it uses pthread library to sleep when Erlang processes are not running (to not waste CPU cycles).

NodeJS environment build

The NodeJS environment build of this port is relatively straightforward, featuring NODERAWFS which means it can access files directly like node does.

Web environment build

The Web environment build of this port is slightly more complex.

Regarding files, main function can load modules (beam or AVM packages) using FetchAPI, which means they can be served by the same HTTP server. This is a fallback and users can preload files using Emscripten file_packager tool.

The port also uses Emscripten’s proxy-to-pthread feature which means AtomVM’s main function is run in a web worker. The rationale is the browser thread (or main thread) with WebAssembly cannot run a loop such as AtomVM’s schedulers. Web workers typically cannot manipulate the DOM and do other things that only the browser’s main thread can do. For this purpose, Erlang processes can call emscripten:run_script/2 function which dispatches the Javascript to execute to the main thread, waiting for completion (with [main_thread]) or not waiting for completion (with [main_thread, async]). Waiting for completion of a script on the main thread does not block the Erlang scheduler, other Erlang processes can be scheduled. Execution of Javascript on the worker thread, however, does block the scheduler.

Javascript code can also send messages to Erlang processes using call and cast functions from main.c. These functions are actually wrapped in atomvm.pre.js. Usage is demonstrated by call_cast.html example.

Cast is straightforward: the message is enqueued and picked up by the scheduler. It is freed when it is processed.

Call allows Javascript code to wait for the result and is based on Javascript promises (related to async/await syntax).

	A promise is created (in the browser’s main thread) in a map to prevent Javascript garbage collection (this is done by Emscripten’s promise glue code).

	An Erlang resource is created to encapsulate the promise so it is properly destroyed when garbage collected

	A message is enqueued with the resource as well as the registered name of the target process and the content of the message

	C code returns the handle of the promise (actually the index in the map) to Javascript Module.call wrapper.

	The Module.call wrapper converts the handle into a Promise object and returns it, so Javascript code can await on the promise.

	A scheduler dequeues the message with the resource, looks up the target process and sends it the resource as a term

	The target process eventually calls emscripten:promise_resolve/1,2 or emscripten:promise_reject/1,2 to resolve or reject the promise.

	The emscripten:promise_resolve/1,2 and emscripten:promise_reject/1,2 nifs dispatch a message in the browser’s main thread.

	The dispatched function retrieves the promise from its index, resolves or rejects it, with the value passed to emscripten:promise_resolve/2 or emscripten:promise_reject/2 and destroys it.

Values currently can only be integers or strings.

If the scheduler cannot find the target process, the promise is rejected with “noproc” as a value. As the promise is encapsulated into an Erlang resource, if the resource object’s reference count reaches 0, the promise is rejected with “noproc” as the value.

Memory Management

Like most managed execution environments, AtomVM provides automated memory management for compiled Erlang/Elixir applications that run on the platform, allowing developers to focus on the logic of application programs, instead of the minutiae of managing the allocation and disposal of memory in the process heap of the program.

Because Erlang/Elixir, and the BEAM, specifically, is a shared-nothing, concurrency-based language, AtomVM can manage memory independently, for each unit of concurrency, viz., the Erlang process. While there is some global state, internally, that AtomVM manages (e.g., to manage all running processes in the system), memory management for each individual process can be performed independently of any other process.

AtomVM internally uses a “Context” structure, to manage aspects of a process (including memory management), and we use “execution context” and “Erlang process” interchangeably in this document. As usual, an Erlang process should be distinguished from the Operating System (OS) process in which Erlang processes run.

For any given execution context, there are three regions of memory that are relevant: i) the stack, ii) the heap, and iii) registers. The stack and heap actually occupy one region of memory allocated in the OS process heap (via malloc or equiv), and grow in opposite directions towards each other. Registers in AtomVM are a fixed size array of 16 elements.

The fundamental unit of memory that occupies space in the stack, heap, and registers is the term, which is typedef’d internally to be an integral type that fits in a single word of machine memory (i.e., a C int). Various tricks are used, described below, to manage and reference multi-word terms, but in general, a term (or in some cases, a term pointer) is intended to fit into a single word or memory.

This document describes the memory layout for each execution context (i.e., Erlang/Elixir process), how memory is allocated and used, how terms are represented internally, and how AtomVM makes room for more terms, as memory usage increases and as terms go out of scope and are no longer used by the application, and can hence be garbage collected.

The Context structure

The Heap and Stack

The heap and stack for each AtomVM process are stored in a single allocated block of memory (e.g., via the malloc C function) in the heap space of the AtomVM program, and the AtomVM runtime manages the allocation of portions of this memory during the execution of a program. The heap starts at the bottom of the block of memory, and grows incrementally towards the top of the allocated block, as memory is allocated in the program. Each word in the heap and stack (or in some cases, a sequence of words) represent a term that has been allocated.

The heap contains all of the allocated terms in an execution context. In some cases, the terms occupy more than one word of memory (e.g., a tuple), but in general, the heap contains a record of memory in use by the program.

The heap grows incrementally, as memory is allocated, and terms are allocated sequentially, in increasing memory addresses. There is, therefore, no memory fragmentation, properly speaking, at least insofar as a portion of memory might be in use and then freed. However, it is possible that previously allocated blocks of memory in the context heap are no longer referenced by the program. In this case, the allocated blocks are “garbage”, and are reclaimed at the next garbage collection. The actual growth of the heap is controlled by a heap growth strategy (atomvm_heap_growth spawn option) as described below.

It is possible for the AtomVM heap, as provided by the underlying operating system, to become fragmented, as the execution context stack and heap are allocated via malloc or equiv. But that is a different kind of fragmentation that does not refer to the allocated block used by an individual AtomVM process.

The stack grows from the top of the allocated block toward the heap in decreasing addresses. Terms in the stack, as opposed to the heap, are either single-word terms, i.e., simple terms like small integers, process ids, etc, or pointers to terms in the heap. In either case, they only occupy one word of memory.

The region between the stack and heap is the free space available to the Erlang/Elixir process.

The following diagram illustrates an allocated block of memory that stores terms (or term pointers) in the heap and stack:

+================================+ <- heap_start --
| word[0] | ^ ^
+--------------------------------+ | |
| word[1] | | |
+--------------------------------+ | |
| word[2] | | heap |
+--------------------------------+ | |
| ... | | |
+--------------------------------+ | |
| | v |
+--------------------------------+ <- heap_ptr |
	^	
		free
	v	
+--------------------------------+ <- e ----		
	^	
+--------------------------------+		
+--------------------------------+	stack	
+--------------------------------+		
word[n-1]	v v	
+================================+ <- stack_base --

The initial size of the allocated block for the stack and heap in AtomVM is 8 words. As heap and stack allocations grow, eventually, the amount of free space will decrease to the point where a garbage collection is required. In this case, a new but larger block of memory is allocated by the AtomVM OS process, and terms are copied from the old stack and heap to the new stack and heap. Garbage collection is described in more detail below.

Heap growth strategies

AtomVM aims at minimizing memory footprint and several heap growth strategies are available. The heap is grown or shrunk when an allocation is required and the current execution context allows for a garbage collection (that will move data structures), allows for shrinking or forces shrinking (typically in the case of a call to erlang:garbage_collect/0,1).

Each strategy is set at the process level.

Default strategy is bounded free ({atomvm_heap_growth, bounded_free}). In this strategy, when more memory is required, the allocator keeps the free amount between fixed boundaries (currently 16 and 32 terms). If no allocation is required but free space is larger than boundary, a garbage collection is triggered. After copying data to a new heap, if the free space is larger than the maximum, the heap is shrunk within the boundaries.

With minimum strategy ({atomvm_heap_growth, minimum}), when an allocation can happen, it is always adjusted to have the free space at 0.

With fibonacci strategy ({atomvm_heap_growth, fibonacci}), heap size grows following a variation of fibonacci until a large value and then grows by 20%. If free space is larger than 75% of heap size, the heap is shrunk. This strategy is inspired from Erlang/OTP’s implementation.

Registers

Registered are allocated in an array of 16 terms (words) and are referenced by the x field in the Context data structure:

+---------+---------+---------+--------+
| x[0] | x[1] | ... | x[15] |
+---------+---------+---------+--------+

Like terms in the stack, terms in registers are either single-word terms, i.e., simple terms like small integers, process ids, etc, or pointers to terms in the heap, in a manner described in more detail below. In either case, they only occupy one word of memory.

Registers are used as part of the BEAM instruction set to store and retrieve values that are passed between BEAM instruction opcodes.

Process Dictionary

AtomVM processes support a process dictionary, or map of process-specific data, as supported via the erlang:put/2 and erlang:get/1 functions.

The Process Dictionary contains a list of key-value pairs, where each key and value is a single-word term, either a simple term like an atom or pid, or a reference to an allocated object in the process heap. (see below)

Heap Fragments

AtomVM makes use of heap fragments in some edge cases, such as loading external terms from the literals table in a BEAM file. Heap fragments are individually allocated blocks of memory that contain may contain multi-word term structures. The data in heap fragments are copied into the heap during a garbage collection event, and then deleted, so heap fragments are generally short lived. However, during execution of a program, there may be references to term structures in such fragments from the stack, registers, the process dictionary, or from nested terms in the process heap.

Mailbox

Each Erlang process contains a process mailbox, which is a linked-list structure of messages. Each message in this list contains a term structure, which is a copy of a term sent to it, e.g., via the erlang:send/2 operation, or ! operator.

The representation of terms in a message is identical to that in the heap and heap fragments. Messages are allocated like fragments and they actually become heap fragments of the receiving process when the message is read off the mailbox (e.g., via receive ... end). Messages (and their term contents) are moved to the main heap as part of regular garbage collection of the process, and the fragment is freed.

Memory Graph

Memory is allocated in the execution context heap, and structured types, such as tuples and lists, generally include references to the blocks of memory that have been previously allocated.

For example, if we look at the memory allocated for the term

{foo, [{bar, self()}]}

we would generally see something like the following in the execution context heap:

| ... |
| |
+---------------------------+
| tuple |<--+
+---------------------------+ |
| bar | |
+---------------------------+ |
| <0.1.0> | |
+---------------------------+ |
| [] |<- | --+
+---------------------------+ | |
| tuple ptr |---+ |
+---------------------------+ |
| tuple | |
+---------------------------+ |
| foo | |
+---------------------------+ |
| list ptr |-------+
+---------------------------+
| |
| ... |
01234567890123456789012345678901234567890123456789

The tuple {bar, self()} is allocated in a block, and the list [{bar, self()}] (or, technically, [{bar, self()} | []]) contains elements that point to it elements (in this case, [] and {bar, self()} – note that in general, in AtomVM, the address of the tail of a list occupies the first byte in the list – more details on that below). Finally, the tuple {foo, [{bar, self()}]} contains the atom foo and a pointer to the list it contains.

In this way, the set of allocated blocks in the execution context heap forms a directed graph of objects, whose nodes are structured terms (lists, tuples, etc) and whose leaves are simple terms, like atoms, pids, and so forth. Note that because BEAM-based languages such as Erlang and Elixir are true functional programming languages, these directed graphs have no cycles.

The stack, registers, and process dictionary contain pointers to terms in the heap. We call these terms “root” nodes, and any term in the heap that is referenced by a root node, or any term that is so referenced by such a term, is in the path of a root node. Some terms in the heap are not in the path of a root node. We call these terms “garbage”.

Note that the values in the stack and register root nodes change over time as the result of the execution of Erlang opcodes, and are dependent on the BEAM output of the Erlang compiler, along with inputs to the program being executed. Thus, a term in the process heap may become garbage, once it is no longer reachable from the root set. But once garbage, the term will always remain garbage, at least until it is reclaimed during a garbage collection event. For more information about how the garbage collector works, see the Garbage Collection section, below.

Simple Terms

The fundamental unit of memory in AtomVM is the term object, which is designed to fit either into a single machine work (single-word terms), or into multiple words (so called “boxed terms” and lists).

This section enumerates the AtomVM term types, and how they are represented in memory.

Note

The term type is overloaded in some cases to store raw pointers to memory addresses, but this is rare and well
controlled.

The following term types take up a single word, referred to as “immediates” in the BEAM documentation[1]. The low-order bits of the word are used to represent the type of the term, and the high order bits represent the term contents, in a manner described in the following sections.

Atoms

An atom is represented as a single word, with the low-order 6 bits having the value 0xB (001011b). The high order word-size-6 bits are used to represent the index of the atom in the global atom table:

 |< 6 >|
+=========================+======+
| atom index |001011| <- 0xB
+=========================+======+
| |
|<---------- word-size --------->|

There may therefore only be 2^{word-size-6} atoms in an AtomVM program (e.g., on a 32-bit platform, 67,108,864). Plenty to work with!

Note

The global atom table is a table of all allocated atoms, and is generally (at least in the limit, as modules are
loaded) a fixed size table. Management of the global atom table is outside of the scope of this document.

Integers

An integer is represented as a single word, with the low-order 4 bits having the value 0xF (1111b). The high order word-size-6 bits are used to represent the integer value:

 |< 4>|
+===========================+====+
| integer value |1111| <- 0xF
+===========================+====+
| |
|<---------- word-size --------->|

The magnitude of an integer is therefore limited to 2^{word-size - 4} in an AtomVM program (e.g., on a 32-bit platform, +- 134,217,728).

Attention

Arbitrarily large integers (bignums) are not currently supported in AtomVM.

nil

The special value nil (typically the tail of the tail … of the tail of a list, or []) is the special value 0x3B:

+================================+
|000 ... 0000111011| <- 0x3B
+================================+
| |
|<---------- word-size --------->|

Pids

A Pid is represented as a single word, with the low order 4 bits indicating the Pid term type (0x03), and (for now), the high order word-size - 4 bits store the local process id:

 |< 4>|
+===========================+====+
| local process id |0011| <- 0x3
+===========================+====+
| |
|<---------- word-size --------->|

There may therefore only be 2^{word-size - 4} Pids in an AtomVM program (e.g., on a 32-bit platform, 268,435,456).

Note

Global process IDs are not currently supported, but they may be in the future, which may result in segmentation of
the high order word-size - 4 bits.

Boxed terms

Some term types cannot fit in a single word, and must therefore used a sequence of contiguous words to represent the term contents. These terms are called “Boxed” terms. Boxed terms use the low-order 6 bits of the first byte (boxed[0]) to represent the term type, and the high order word-size - 6 bits to represent the remaining size (in words) of the boxed term, not including the first word.

Boxed term pointers

Before discussing the different types of boxed terms in detail, let us first see how boxed terms are referenced from the stack, registers, process dictionary, and from embedded terms in the heap. We call such references to boxed terms boxed term pointers.

A boxed term pointer is a single-word term that contains the address of the referenced term in the high-order word-size - 2 bits, and 0x2 (10b) in the low-order 2 bits.

 |2 |
+=============================+==+
| term address |10| <- term pointer type (2 bits)
+=============================+==+
| |
|<---------- word-size --------->|

Because terms (and hence the heap) are always aligned on boundaries that are divisible by the word size, the low-order 2 bits of a term address are always 0. Consequently, the high-order word-size - 2 (1,073,741,824, on a 32-bit platform) are sufficient to address any term address in the AtomVM address space, for 32-bit and greater machine architectures.

References

A reference (e.g., created via erlang:make_ref/0) stores a 64-bit incrementing counter value (a “ref tick”). On 64 bit machines, a Reference takes up two words – the boxed header and the 64-bit value, which of course can fit in a single word. On 32-bit platforms, the high-order 28 bits are stored in boxed[1], and the low-order 32 bits are stored in boxed[2]:

 |< 6 >|
+=========================+======+
| boxed-size |010000| boxed[0]
+-------------------------+------+
| high-order ref-ticks | boxed[1]
+================================+
| low-order ref-ticks | boxed[2] (32-bit only)
+= = = = = = = = = = = = = = = ==+
| |
|<---------- word-size --------->|

Tuples

Tuples are represented as boxed terms containing a boxed header (boxed[0]), a type tag of 0x00 (000000b), followed by a sequence of n-many words, which may either (copies of) single-word terms, or boxed term pointers, where n is the arity of the tuple:

 |< 6 >|
+=========================+======+
| boxed-size (n) |000000| boxed[0]
+-------------------------+------+
| element-1 | boxed[1]
+--------------------------------+
| element-2 | boxed[2]
+--------------------------------+
| ... | boxed[i]
+--------------------------------+
| element-n | boxed[n]
+================================+
| |
|<---------- word-size --------->|

Maps

Maps are represented as boxed terms containing a boxed header (boxed[0]), a type tag of 0x3C (111100b), followed by:

	a term pointer to a tuple of arity n containing the keys in the map;

	a sequence of n-many words, containing the values of the map corresponding (in order) to the keys in the reference tuple.

The keys and values are single word terms, i.e., either immediates or pointers to boxed terms or lists.

 +=========================+======+
+-----> | boxed-tuple (n) |000000|
| +-------------------------+------+
| | key-1 |
| +--------------------------------+
| | key-2 |
| +--------------------------------+
| | ... |
| +--------------------------------+
| | key-n |
| +================================+
| | |
| ...
| | |< 6 >|
| +=========================+======+
| | boxed-size (n) |111100| boxed[0]
| +-------------------------+------+
+-----------------< keys | boxed[1]
 +--------------------------------+
 | value-1 | boxed[2]
 +--------------------------------+
 | ... | ...
 +--------------------------------+
 | value-n | boxed[2 + n]
 +================================+
 | |
 |<---------- word-size --------->|

The tuple of keys may or may not be contiguous with the boxed term holding the map itself (and in general will not be, after garbage collection). In addition, maps that are modified [sic] via the := operator (or via =>, when the key already exists in the source map) share the keys tuple, for space efficiency.

Binaries

Binaries are stored in several different ways, depending on their size and the kinds of data to which they refer.

Binary data less than 64 bytes in length are stored in the process heap, as so-called Heap Binaries.

Binary data greater or equal to 64 bytes is stored in two manners, depending on whether the data stored is constant data (e.g., literal binary data compiled directly into a BEAM file), or dynamically allocated data, e.g., as the result of a call to the erlang:list_to_binary/1 Nif.

Non-const binaries are stored outside of the heap in dynamically allocated memory and are reference-counted, whereby references to dynamically allocated blocks are tracked from pointers in heap storage. This way, large blocks of binary data can be efficiently shared between processes; only a relatively small term that contains a reference to the dynamically allocated storage needs to be copied. When the reference count of non-literal binary reaches 0, the dynamically allocated memory is free’d.

Const binaries share similar features to non-const binaries in the process heap; however, instead of pointing to dynamically allocated memory that requires reference counting and memory management, the boxed term in the process heap points directly to constant memory (e.g., a term literal stored in a memory-mapped BEAM file). This is especially useful in memory constrained applications, such as the ESP32 micro-controller, where the BEAM file contents are not read into memory, but are instead directly mapped from flash storage.

Finally, a special kind of binary is used in the heap to maintain the state of a match context, when, for example, matching binary terms using Erlang bit syntax. Like non-const binaries, creation and destruction of match context binaries will affect the reference count on the binaries to which they refer.

The following sub-sections describe these storage mechanisms and memory management in more detail.

Heap Binaries

Heap binaries are represented as boxed terms containing a boxed header (boxed[0]), a type tag of 0x024 (100100b), followed by the size in bytes of the binary, and then a sequence of n-many words, which contains the sequence of size-many bytes (<= word-size * n):

 |< 6 >|
+=========================+======+
| boxed-size (n) |100100| boxed[0]
+-------------------------+------+
| size (in bytes) | boxed[1]
+--------------------------------+
| byte-1, byte-2, byte-3, ... | boxed[2]
+--------------------------------+
| ... | boxed[i]
+-------------------+------------+
| ..., byte-{size-1}| -unused- | boxed[n+1]
+===================+============+
| |
|<---------- word-size --------->|

Note

If the number of bytes in a binary is not evenly divisible by the machine word size, then the remaining sequence
of bytes in the last word are unused.

Reference Counted Binaries

Reference counted binaries are represented as boxed terms containing a boxed header (boxed[0]), a type tag of 0x020 (100000b), followed by the size in bytes of the binary data, a word containing a set of flags, and then a pointer to the off-heap data.

Currently, only the low-order bit of the flags field is used. A 0 value of indicates that the referenced binary is non-literal.

The off-heap data is a block of allocated data, containing:

	a ListHead structure, used to maintain a list of dynamically allocated data (mostly for bookkeeping purposes);

	a reference count (unsigned integer);

	the size of the stored data;

	the stored data, itself.

All of the above data is allocated in a single block, so that it can be easily free’d when no longer referenced.

The reference count is initialized to 1, under the principle that that reference count is incremented for any occurrence of boxed terms that reference the same data in any heap space, including process heaps, mailbox messages, heap fragments, and so forth. Decrementing reference counts and free’ing data in off-heap storage is discussed in more detail below, in the Garbage Collection section.

 |< 6 >|
+--> +=========================+======+
| | boxed-size (5) |100000| boxed[0]
| +-------------------------+------+
| | size (in bytes) | boxed[1]
| +--------------------------------+
| | flags 0| boxed[2]
| +--------------------------------+ off-heap storage
| | ptr >-------------- boxed[3] ---> +----------------------+ ------
| +--------------------------------+ | prev | ^
| | cdr | boxed[4] +----------------------+ | ListHead
| +--------------------------------+ | next | v
+-----------------< car | boxed[5] +----------------------+ ------
 +================================+ | reference-count |
 |<---------- word-size --------->| +----------------------+
 | size |
 +----------------------+
 | data |
 ...
 | |
 +----------------------+

Note

The size of a reference counted binary is stored both in the process heap (in the boxed term), as well as in the
off-heap storage. The size count in the off-heap storage is needed in order to report the amount of data in use by
binaries (e.g., via erlang:memory/0,1).

In addition, a reference-counted boxed term contains a cons-cell appended to the end of the boxed term, which is used by the garbage collector for tracking references. The car of this cell points to the boxed term, itself, and the cdr points to the “previous” cons cell associated with a reference counted binary in the heap, if there is one, or the empty list (nil), otherwise. The cons cell forms an element in the “Mark and Sweep Object” (MSO) list, used to reclaim unreferenced storage during a garbage collection event.. See the Garbage Collection section, below, for more information about the critical role of this structure in the process of reclaiming unused memory in the AtomVM virtual machine.

Const Binaries

Const binaries are stored in the same manner as Reference Counted binaries, with the following exceptions:

	The low order bit of the flags field (boxed[2]) is 1, to indicate that the reference binary is constant;

	The ptr field (boxed[3]) points directly to the constant storage (e.g., literal data stored in a memory-mapped BEAM file);

	The trailing cons cell elements are unused, as dynamic memory management for static storage is unnecessary. These values are initialized to nil.

This heap structure has the following representation:

 |< 6 >|
+=========================+======+
| boxed-size (5) |100000| boxed[0]
+-------------------------+------+
| size (in bytes) | boxed[1]
+--------------------------------+
| flags 1| boxed[2]
+--------------------------------+ static storage
| ptr >-------------- boxed[3] -------> +----------------------+
+--------------------------------+ | data |
| unused | boxed[4] | |
+--------------------------------+ ...
| unused | boxed[5] | |
+================================+ +----------------------+
|<---------- word-size --------->|

Match Binaries

Match binaries are represented as boxed terms containing a boxed header (boxed[0]), a type tag of 0x04 (000100b), and the following elements:

	a reference to either a binary or another match binary that refers to a binary;

	an offset in the referenced binary used by the match opcodes;

	a saved state used for backtracking unmatched clause heads;

Like a reference counted binary, a match binary includes a trailing cons cell, whose car element points to the actual referenced binary (if the referenced binary is a reference-counted binary), and whose cdr points to the “previous” cons cell associated with a reference counted binary in the heap.

Note

If the referenced binary is not reference-counted, the trailing cons cell elements are unused and are initialized
to nil.

some
binary |< 6 >|
^ +=========================+======+
| | boxed-size (5) |100100| boxed[0]
| +-------------------------+------+
| | match-or-binary-ref | boxed[1]
| +--------------------------------+
| | offset | boxed[2]
| +--------------------------------+
| | saved | boxed[3]
| +--------------------------------+
| | cdr | boxed[4]
| +--------------------------------+
+--------------------< car | boxed[5]
 +================================+
 |<---------- word-size --------->|

A reference to a reference-counted binary counts as a reference, in which case the creation or copying of a match binary results in the increment of the reference-counted binary’s reference count, and the garbage collection of a match binary results in a decrement (and possible freeing) of a reference-counted binary. The trailing cons cell becomes an element of the context (or message) MSO list, and plays a critical role in garbage collection. See the garbage collection section below for more information about the role of this structure.

Sub-Binaries

Sub-binaries are represented as boxed terms containing a boxed header (boxed[0]), a type tag of 0x28 (001000b)

A sub-binary is a boxed term that points to a reference-counted binary, recording the offset into the binary and the length (in bytes) of the sub-binary. An invariant for this term is that the offset + length is always less than or equal to the length of the referenced binary.

 some
 refc
 binary |< 6 >|
 ^ +=========================+======+
 | | boxed-size (3) |001000| boxed[0]
 | +-------------------------+------+
 | | len | boxed[1]
 | +--------------------------------+
 | | offset | boxed[2]
 | +--------------------------------+
 +----------------< binary-ref | boxed[3]
 +================================+
 |<---------- word-size --------->|

Note than when a sub-binary is copied between processes (e.g., via erlang:send, or !), the sub-binary boxed term, as well as the boxed-term that manages the reference-counted binary is copied, as well. Thus, sending a sub-binary to another process will result in an increment of the reference count on the referenced binary, and similarly, garbage collection of the sub-binary will result in a decrement of the referenced binary’s reference count.

A sub-binary may be created from both const (literal) and non-const reference-counted binaries. For performance reasons, sub-binaries do not reference heap binaries.

Sub-binaries are created via the binary:part/3 and binary:split/2 Nifs, as well as via the /binary bit syntax specifier.

Lists

A list is, very simply, a cons cell, i.e., a sequence of two words, whose first word is a term (single word or term pointer) representing the tail (cdr) of the list, and the second of which represents the head (car) of the list.

+================================+
| tail | list_elem[0]
+--------------------------------+
| head | list_elem[1]
+================================+
| |
|<---------- word-size --------->|

Note

Lists are typically terminated with the empty list ([]), represented by the nil term, described above. However,
nothing in Erlang requires that a sequence of cons cells is nil-terminated.

Unlike boxed terms, the low-order two bits of list pointers are 0x1 (01b):

+=============================+==+
| term address |01| <- list pointer type (2 bits)
+=============================+==+
| |
|<---------- word-size --------->|

Strings

Strings are just lists of integers, but they are efficiently allocated at creation time so that a contiguous block of cons cells are created in the heap. They otherwise have the same properties of a list described above.

+================================+
| address-of-next-cons |01| elem[1]
+--------------------------------+
| int-value |
+--------------------------------+
| address-of-next-cons |01| elem[2]
+--------------------------------+
| int-value |
+--------------------------------+
| ... |01| elem[i]
+--------------------------------+
| ... |
+--------------------------------+
| nil | elem[n]
+--------------------------------+
| int-value |
+================================+
| |
|<---------- word-size --------->|

Note

String elements may not remain contiguous after a garbage collection event.

Functions

Functions are represented as boxed terms containing a boxed header (boxed[0]), a type tag of 0x14 (010100b), followed by the raw memory address of the Module data structure in which the function is defined, and the function index (so that the function can be located).

In addition, if there are any terms that are used outside of the scope of the function (i.e., closures), these terms are copied from registers into the function objects

 |< 6 >|
+=========================+======+
| boxed-size (n) |010100| boxed[0]
+-------------------------+------+
| module address | boxed[1]
+--------------------------------+
| function index | boxed[2]
+--------------------------------+
| closure_1 | boxed[3]
+- - - - - - - - - - - - - - - - +
| ... |
+- - - - - - - - - - - - - - - - +
| closure_k | boxed[n-1]
+= = = = = = = = = = = = = = = = +
| |
|<---------- word-size --------->|

Special Stack Types

Some terms are only used in the stack.

Continuation Pointer

A continuation pointer is a raw address. Because words are aligned on word boundaries, the low order two bits of a continuation pointer are always 0x0 ((00000000)b):

+================================+
| raw address |00|
+================================+

Catch Labels

A catch label is used to indicate a position in code to which to jump in a try-catch expression. The term occupies a single term, with the low order 6 bits having the value 0x1B, the high order 8 bits holding the module index (m_i), and the middle 18 bits holding the catch label index (l_i):

|< 8 >|< 18 >|< 6 >|
+========+================+======+
| m_i | l_i |011011|
+========+================+======+
| |
|<---------- word-size --------->|

Module and catch label indices are stored outside of the process heap and are outside of the scope of this document.

Garbage Collection

Garbage collection refers to the process of removing no-longer referenced term data stored in the heap, making room for new storage, as the program requires. AtomVM implements Tracing Garbage Collection, as does Erlang Garbage Collection. Unlike some garbage collection systems (e.g., as implemented by the Java Virtual Machine), garbage collection in Erlang-based systems, is performed independently on the heap allocated for each active Erlang process; there is no single shared heap for all running Erlang processes.

A given process heap and stack occupy a single region of malloc’d memory, and it is the job of the Erlang VM to manage memory within the allocated regions. Because this region is fixed, every allocation in the heap or stack results in less free space for the Erlang process. When free space reaches a limit, AtomVM will run a garbage collection event, which will allocate a new block of memory to hold the new heap and stack (the actual allocation depends on the heap growth strategy as explained above), and then copy terms from the old heap and stack to the new heap and stack. Any terms that no longer have references from term pointers in the old stack or registers are not copied to the new stack, and are therefore “collected” as garbage. In addition, any objects in the old heap that reference objects in shared memory (see reference counted binaries, above) are also managed as part of this process, in a manner described below.

 +---------+ ------
 | new | ^
 | heap | |
 +---------+ |
 ---- +----------+ | | |
 ^ | | | | |
 | | old | | | | new
old | | heap | | | | malloc'd
malloc'd| | | ===> | | | region
region | +==========+ gc | free | |
 | | old | | | |
 v | stack | | | |
 ---- +----------+ | | |
 +---------+ |
 | new | |
 | stack | v
 +---------+ -----

+---+---+---+-------------------+---+
| 0 | 1 | 2 | | 15|
+---+---+---+-------------------+---+
registers

process dictionary
+--------+--------+
| k1 | v1 |
+--------+--------+
| k2 | v2 |
+--------+--------+
| ... |

Terms stored in the stack, registers, and process dictionary are either single-word terms (like atoms or pids) or term references, i.e., single-word terms that point to boxed terms or list cells in the heap. These terms constitute the “roots” of the memory graph of all “reachable” terms in the process.

When does garbage collection happen?

Garbage collection typically occurs as the result of a request for an allocation of a multi-word term in the heap (e.g., a tuple, list, or binary, among other types), and when there is currently insufficient space in the free space between the current heap and the current stack to accommodate the allocation.

Garbage collection is a synchronous operation in each Context (Erlang process), but conceptually no other execution contexts are impacted (i.e., no global locks, other than those required for memory allocation in the OS process heap).

Garbage Collection Steps

Garbage collection in AtomVM can be broken down into the following phases:

	Allocation of a new block of memory to store the new heap and stack;

	A “shallow copy” of all root terms (from the stack, registers, and process dictionary) into the heap, as well as updates to the references in the stack, registers, and process dictionary;

	An iterative “scan and copy” of the new heap, until all “live” terms are copied to the new heap;

	A sweep of the “Mark Sweep Object” list;

	Deletion of the old heap.

The following subsections describe these phases in more detail.

Allocation

Garbage collection typically occurs as the result of a request for space on an Erlang process’s heap. The amount of space requested is dependent on the kind of term being allocated, but in general, AtomVM will check the amount of free space in the heap, and if it is below the amount of requested space plus some extra (currently, 16 words), then a garbage collection will occur, with the requested allocation space being the current size of the heap, plus the requested size, plus an extra 16 words.

Allocation is a straightforward malloc in the (operating system) process heap of the requested set of words. This block of storage will become the “new heap”, as opposed to the existing, or “old heap”.

Shallow Copy

The garbage collector starts by traversing the current root set, i.e., the terms contained in the stack, registers, and keys and values in the process dictionary, and performs a “shallow copy” of the terms that are in or referenced from these root terms from the old heap to the new heap, while at the same time updating the values in the root set, as some of these values may be pointers into the old heap, and therefore need to be updated to pointers in the new heap.

A shallow copy of a term depends on the type of the term being copied. If the term is a single-word term, like an atom or pid, then the term only resides in the root set, itself, and nothing needs to be copied from the old heap to the new heap. (The term may occur in the heap elsewhere, but as an element of another term, like a tuple, for example.)

On the other hand, if the term in the root set points to a boxed term in the old heap, then three things happen:

	The boxed term is copied from the old heap to the new heap. Note that if the term being copied contains pointers to other boxed terms in the old heap, the pointers are not updated (yet); they will be as part of the iterative scan and copy (see below);

	The first word of the existing boxed term that was copied is over-written with a marker value (0x2b) in the old heap, and the second word is over-written with the address of the copied boxed term in the new heap.

	The term in the root set is updated with the address of the copied boxed term in the new heap.

This process is best illustrated with a motivating example:

{foo, <<1,2,3,4,...,1024>>}

Suppose this term resides in the old heap, and some register[i] is a root term pointer to this tuple in the heap:

+-> | | | |
| | | | |
| | | | | USED
| | | | |

| | | | |
| +--------------+ +=============+ <-- heap
| | tuple |<---+ | | addr
+--------------+				
	atom foo			
+--------------+				
+----< refc binary | | | | FREE
 +--------------+ | | |
 | | | | |
 | ... | | | ... |
 | | | | |
 old heap | new heap
 |
 ---+----------------+---
 ... | old-ptr | ...
 ---+----------------+---
 register[i]

The boxed term is copied to the new heap, overwritten with the marked header 0x2b, along with a pointer to the new term, and the root term is updated with the same address:

+-> | | <--------+ | |

| | | | | |
| +--------------+ >>>>>>>>>|>> +-------------+
| | 0x2b | +--+---|-> | tuple | USED
| +--------------+ | | | +-------------+
| | ptr --------+ | | | atom foo |
| +--------------+ | | +-------------+
+----< refc binary | | +----< refc binary|
 +--------------+ >>>>>|>>>>>>>+=============+ <-- new
 | | | COPY | | heap
 | ... | | | | addr
 old heap | | |
 | | | FREE
 |
 |
 ---+----------------+---
 ... | new-ptr | ...
 ---+----------------+---
 register[i]

Note that the first term of the tuple (atom foo) is copied to the new heap, but the pointer to the refc binary is out of date – it still points to a value in the old heap. This will be corrected in the iterative scan and copy phase, below.

After a shallow copy of the root set, all terms immediately reachable from the root set have been copied to the new heap, and any boxed terms they reference have been marked as being moved. The new heap consists of a set of contiguous copied boxed terms from the old heap, starting from the base address of the heap, to some higher address in the heap, but less than or equal to the maximum heap size on the new heap.

Iterative Scan and Copy

The iterative scan and copy phase works as follows:

	Starting with the newly created region used in the shallow copy phase in the new heap, iterate over every term in the region (call this the “scan©” region);

	If any term in this region is a reference to a term on the old heap that has not been marked as copied, perform a shallow copy of it (as described above) to the new heap, but starting at the next free address below the region being iterated over;

	Note that after iterating over all such terms in the scan and copy region, all terms are “complete”, in that there are no references to boxed terms in the old heap in that region. We have, however, created a new region which may have references to boxed terms in the old heap;

	So we repeat the process on the new region, which will complete the current scan© region, but which in turn may create a new region of copied terms;

	The process is repeated until no new regions have been introduced.

The following sequence of iterative additions to the new heap illustrates this process:

+---------------+ ===> +---------------+ ===> +---------------+ ...
scan©		complete		complete
region		region		region
+---------------+ +---------------+ +---------------+
 | newly | | scan© |
 | copied | | region |
 | terms | | |
 +---------------+ +---------------+
 |newlycpiedterms|
 +---------------+

 ... ===> +---------------+ ===> +---------------+
 | complete | | complete |
 | region | | region |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 +---------------+ | |
 | scan© | | |
 +---------------+ +---------------+

At the end of the iterative scan and copy, all reachable terms in the old heap will be copied to the new heap, and no boxed terms in the old heap will contain pointers to terms in the old heap. Any terms that have not been copied to the new heap are “garbage”, as there are no longer any paths to them from the root set, and can therefore be destroyed,

MSO Sweep

As mentioned in the section above on binaries, AtomVM supports reference-counted binaries, whereby binaries of a sufficiently large size (>64 bytes) are allocated outside of the process heap, and are instead referenced from boxed terms in the heap. This way, binaries, which are immutable objects, can be shared between processes without incurring the time and space cost of a large data copy.

In order to manage the memory associated with such binaries, AtomVM tracks references to these off-heap binaries via the “Mark and Sweep Object” list, a list that keeps track of which boxed terms in the process heap have a reference to an off-heap binary. When such a boxed term is copied (e.g., from a heap to a mailbox on a send, or from a mailbox to a heap on a receive), the reference count is incremented on the off-heap binary.

The MSO list is formed via the cons cells that are appended to reference counted binary boxed terms in the process heap. The list is initially empty (nil), but as reference counted binaries are added to the process heap, they are pre-pended to the MSO list for the process (on the mailbox message, as reference-counted binaries in the mailbox need to be managed, as well).

The following diagram illustrates a set of two reference counted binaries in a process heap:

 | |
+-----> +-------------------+
	refc
	binary
+-------------------+ <----+	
	nil
+-------------------+	
+---------------< car | |
 +-------------------+ |
 | | |
 ...
 | | |
+-----> +-------------------+ |
	refc	
	binary	
+-------------------+ <----	-------+	
	cdr >-------------+	
+-------------------+		
+--------------< car | |
 +-------------------+ |
 | | |
 | | |
 ... |
 |
 +-------^--------+
 | mso_list |
 +----------------+

After the new heap has been scanned and copied, as described above, the MSO list is traversed to determine if any reference-counted binaries are no longer referenced from the process heap. If any reference counted binaries in the heap have not been marked as moved from the old heap, they are, effectively, no longer referenced from the root set, and the reference count on the corresponding off-heap binary can be decremented. Furthermore, when the reference count reaches 0, the binaries can then be deleted.

Note

Const binaries, while they have slots for entry into the MSO list, nonetheless are never “stitched” into the MSO
list, as the binary data they point to is const, endures for the lifecycle of the program, and is never deleted.
Match binaries, on the other hand, do count as references, and can therefore be stitched into the MSO list. However,
when they are, the reference counted binaries they point to are the actual binaries in the process heap, not the
match binaries, as with the case of refc binaries on the process heap.

Deletion

Once all terms have been copied from the old heap to the new heap, and once the MSO list has been swept for unreachable references, the old heap is simply discarded via the free function.

Packbeam Format

AtomVM makes use of the packbeam format for aggregating beam and other file types into a single file that is used as the code base for an AtomVM application. Typically, on an embedded device, packbeam files are uploaded (e.g., via serial connection) to a specific location on flash media. The AtomVM runtime will locate the entrypoint into the application, and use the beam and other files flashed to the local media to run the uploaded application.

AtomVM provides a simple tool for generating packbeam files, but other tools have emerged for manipulation packbeam files using standard Erlang and Elixir tool chains, notably Mix and rebar3.

This document describes the packbeam format, so that both AtomVM and upstream/downstream tooling have a reference document on which to base implementations.

Overview

Packbeam files are binary-encoded aggregations of BEAM and plain data files. At a high level, a packbeam file consists of a packbeam header, followed by a sequence of files (beam or otherwise), each of which is prefixed with a header, including data about the file (name, size, flags, etc).

All binary integer values are 32-bit, in network order (big-endian). Headers and encoded files are padded when necessary and aligned on 4-byte boundaries.

At present, the AtomVM runtime treats data in packbeam files as read-only data. There is no support for modifying the contents on an AtomVM file by the runtime.

Packbeam Header

All AtomVM files begin with the packbeam header, a fixed 24-byte sequence of octets:

0x23, 0x21, 0x2f, 0x75,
0x73, 0x72, 0x2f, 0x62,
0x69, 0x6e, 0x2f, 0x65,
0x6e, 0x76, 0x20, 0x41,
0x74, 0x6f, 0x6d, 0x56,
0x4d, 0x0a, 0x00, 0x00

The ASCII encoding of this sequence is

#!/usr/bin/env AtomVM\n

followed by two nil (0x00) bytes.

The packbeam header is followed by a sequence of 0 or more encoded files. The number of files in a packbeam file is not indicated in the packbeam header; however, packbeam files do contain a special end file header, marking the end of the sequence of encoded files.

File encodings

Each embedded file in a packbeam file contains a file header, followed by the file contents.

File Header

The file header consists of the following 4 fields:

	size (32 bit, big-endian)

	flags (32-bit, big endian)

	reserved (32-bit, big-endian, currently unused)

	module_name (null-terminated sequence of bytes)

The size field indicates the size (in bytes) of the encoded file following the header. This size includes the file content length, in addition to any padding that may have been added to the file, in order for it to align on a 4-byte boundary.

Currently, the two low-order bits of the flags field are used. 0x02 indicates the file is a BEAM file, and 0x01 indicates that the file contains a start/0 function, and is therefore suitable as an entrypoint to start code execution.

When AtomVM starts, it will scan the BEAM files in the AtomVM file, from start to finish, with which it is initialized to find the entrypoint to start code execution. It will start execution on the first BEAM file with a start/0 function, i.e., whose flags mask against 0x03. It is conventional, but not required, for the first file in an AtomVM file to be a BEAM file that has a start/0 entrypoint.

The reserved field is currently unused.

The module_name is variable length, null terminated sequence of characters. Because the module name is variable-length, the header may be padded with null characters (0x00), in order to align the start of the file contents on a 4-byte boundary.

Example

The following BEAM header indicates a BEAM file with a length of 308 bytes (0x00000134), with a start/0 entrypoint (0x00000003), and named mylib.beam (0x6D796C69 622E6265 616D00). The header has a 1-byte padding of null (0x00) characters.

00000134 00000003 00000000 6D796C69 622E6265 616D0000

BEAM files

BEAM files obey IFF encoding as detailed here, but certain information in BEAM files is stripped out in order to minimize the amount of data stored on flash.

The following BEAM chunks are included in BEAM files:

	AtU8

	Code

	ExpT

	LocT

	ImpT

	LitU

	FunT

	StrT

	LitT

Any other chunks are stripped out of the BEAM files before insertion into AVM files.

In addition, data in the literals table (LitT) are uncompressed before insertion into AVM files, as the AtomVM runtime does not include support for zlib decompression.

BEAM files may be padded at the end with a sequence of 1-3 null (0x00) characters, in order to align on 4-byte boundaries.

Note

The module_name field in the file header will only contain the “base” name of the BEAM file, i.e., the file name
stripped of any path information.

Normal Files

Normal files (e.g., text files, data files, etc.) can be stored in packbeam AVM files, as well as BEAM files. For example, a normal file might contain static configuration information, or data that is interpreted at runtime.

Normal files contain a 32-bit big-endian size prefix, indicating the size of the file data (without padding). Note that the size field in the file header includes the size of the data with padding, if applicable.

The AtomVM runtime provides access to data files via the atomvm:read_priv/2 NIF. This function will create a path name formed by the App (atom) and Path (string) terms provided by this function, separated by "/priv/". For example, the expression

atomvm:read_priv(mylib, "sample.txt")

yields a binary containing the contents of mylib/priv/sample.txt, if it exists, in the AtomVM packbeam file.

As a consequence, normal files should be included in packbeam files using module names that obey the above patterns.

Tip

Normal file names may encode virtual directory names, such as mylib/priv/another/sample/text/file. There is no
requirement that the Path component of a normal file be a simple file name.

end file

Packbeam files end with a special end header. The size field of the end header is 0 bytes.

Example end header

The following sequence of bytes encodes the end header:

00000000 00000000 00000000 656E6400

API Reference Documentation

Erlang Libraries

estdlib

	The estdlib library

	Module base64

	Module binary

	Module calendar

	Module code

	Module crypto

	Module erlang

	Module erts_debug

	Module gen_event

	Module gen_server

	Module gen_statem

	Module gen_tcp

	Module gen_udp

	Module inet

	Module io

	Module io_lib

	Module lists

	Module logger

	Module maps

	Module math

	Module net

	Module proplists

	Module queue

	Module sets

	Module socket

	Module ssl

	Module string

	Module supervisor

	Module timer

	Module unicode

eavmlib

	The eavmlib library

	Module ahttp_client

	Module atomvm

	Module avm_pubsub

	Module console

	Module emscripten

	Module esp

	Module esp_adc

	Module gpio

	Module http_server

	Module i2c

	Module json_encoder

	Module ledc

	Module network

	Module network_fsm

	Module pico

	Module port

	Module spi

	Module timestamp_util

	Module uart

alisp

	The alisp library

	Module alisp

	Module alisp_stdlib

	Module arepl

	Module sexp_lexer

	Module sexp_parser

	Module sexp_serializer

etest

	The etest library

	Module etest

AtomVM ‘C’ APIs

The estdlib library

Modules

	base64

	binary

	calendar

	code

	crypto

	erlang

	erts_debug

	gen_event

	gen_server

	gen_statem

	gen_tcp

	gen_udp

	inet

	io

	io_lib

	lists

	logger

	maps

	math

	net

	proplists

	queue

	sets

	socket

	ssl

	string

	supervisor

	timer

	unicode

Module base64

	Description

	Function Index

	Function Details

An implementation of a subset of the Erlang/OTP base64 interface.

[bookmark: description]

Description

This module is designed to be API-compatible with the Erlang/OTP base64 module,
with the following exceptions:

	No support for decoding data with whitespace in base64 data

	No support for mime decoding functions

[bookmark: index]

Function Index

	decode/1	 Base-64 decode a binary or string, outputting a binary.
	decode_to_string/1	 Base-64 decode a binary or string, outputting a string.
	encode/1	 Base-64 encode a binary or string, outputting a binary.
	encode_to_string/1	 Base-64 encode a binary or string, outputting a string.

[bookmark: functions]

Function Details

[bookmark: decode-1]

decode/1

decode(Data::binary() | iolist()) -> binary()

Data: the data to decode

returns: the base-64 data decoded, as a binary

Base-64 decode a binary or string, outputting a binary.

This function will raise a badarg exception if the supplied
data is not valid base64-encoded data.

[bookmark: decode_to_string-1]

decode_to_string/1

decode_to_string(Data::binary() | iolist()) -> string()

Data: the data to decode

returns: the base-64 data decoded, as a string

Base-64 decode a binary or string, outputting a string.

This function will raise a badarg exception if the supplied
data is not valid base64-encoded data.

[bookmark: encode-1]

encode/1

encode(Data::binary() | iolist()) -> binary()

Data: the data to encode

returns: the base-64 data encoded, as a binary

Base-64 encode a binary or string, outputting a binary.

[bookmark: encode_to_string-1]

encode_to_string/1

encode_to_string(Data::binary() | iolist()) -> string()

Data: the data to encode

returns: the base-64 data encoded, as a string

Base-64 encode a binary or string, outputting a string.

Module binary

	Description

	Function Index

	Function Details

An implementation of a subset of the Erlang/OTP binary interface.

[bookmark: index]

Function Index

	at/2	 Get a byte from a binary by index.
	decode_hex/1	 Decodes a hex encoded binary into a binary.
	encode_hex/1	 Encodes a binary into a hex encoded binary using the specified case for the hexadecimal digits "a" to "f".
	encode_hex/2	 Encodes a binary into a hex encoded binary using the specified case for the hexadecimal digits "a" to "f".
	part/3	Get the part of a given binary.
	split/2	Split a binary according to pattern.
	split/3	Split a binary according to pattern.

[bookmark: functions]

Function Details

[bookmark: at-2]

at/2

at(Binary::binary(), Index::non_neg_integer()) -> byte()

Binary: binary to get a byte from
Index: 0-based index of the byte to return

returns: value of the byte from the binary

Get a byte from a binary by index.

[bookmark: decode_hex-1]

decode_hex/1

decode_hex(Data::<<_:_*16>>) -> binary()

Data: hex encoded binary to decode

returns: decoded binary

Decodes a hex encoded binary into a binary.

[bookmark: encode_hex-1]

encode_hex/1

encode_hex(Data::binary()) -> binary()

Data: binary data to convert into hex encoded binary

returns: hex encoded binary

Encodes a binary into a hex encoded binary using the specified case for the hexadecimal digits “a” to “f”.

[bookmark: encode_hex-2]

encode_hex/2

encode_hex(Data::binary(), Case::lowercase | uppercase) -> binary()

Data: binary data to convert into hex encoded binary
Case: which case to encode into

returns: hex encoded binary

Encodes a binary into a hex encoded binary using the specified case for the hexadecimal digits “a” to “f”.

[bookmark: part-3]

part/3

part(Binary::binary(), Pos::non_neg_integer(), Len::integer()) -> binary()

Binary: binary to extract a subbinary from
Pos: 0-based index of the subbinary to extract
Len: length, in bytes, of the subbinary to extract.

returns: a subbinary from Binary

Get the part of a given binary.
A negative length can be passed to count bytes backwards.

[bookmark: split-2]

split/2

split(Binary::binary(), Pattern::binary()) -> [binary()]

Binary: binary to split
Pattern: pattern to perform the split

returns: a list composed of one or two binaries

Equivalent to split(Binary, Pattern, []).

Split a binary according to pattern.
If pattern is not found, returns a singleton list with the passed binary.
Unlike Erlang/OTP, pattern must be a binary.

[bookmark: split-3]

split/3

split(Binary::binary(), Pattern::binary(), Option::[global]) -> [binary()]

Binary: binary to split
Pattern: pattern to perform the split

returns: a list composed of one or two binaries

Split a binary according to pattern.
If pattern is not found, returns a singleton list with the passed binary.
Unlike Erlang/OTP, pattern must be a binary.
Only implemented option is global

Module calendar

	Description

	Data Types

	Function Index

	Function Details

A partial implementation of the Erlang/OTP calendar functions.

[bookmark: description]

Description

This module provides an implementation of a subset of the functionality of
the Erlang/OTP calendar functions.

All dates conform to the Gregorian calendar. This calendar was introduced by
Pope Gregory XIII in 1582 and was used in all Catholic countries from this year.
Protestant parts of Germany and the Netherlands adopted it in 1698, England followed
in 1752, and Russia in 1918 (the October revolution of 1917 took place in November
according to the Gregorian calendar).

The Gregorian calendar in this module is extended back to year 0. For a given date,
the gregorian day is the number of days up to and including the date specified.
[bookmark: types]

Data Types

[bookmark: type-date]date()

date() = {year(), month(), day()}

[bookmark: type-datetime]datetime()

datetime() = {date(), time()}

[bookmark: type-day]day()

day() = 1..31

[bookmark: type-day_of_week]day_of_week()

day_of_week() = 1..7

[bookmark: type-gregorian_days]gregorian_days()

gregorian_days() = integer()

[bookmark: type-hour]hour()

hour() = 0..23

[bookmark: type-minute]minute()

minute() = 0..59

[bookmark: type-month]month()

month() = 1..12

[bookmark: type-second]second()

second() = 0..59

[bookmark: type-time]time()

time() = {hour(), minute(), second()}

[bookmark: type-year]year()

year() = integer()

[bookmark: index]

Function Index

	date_to_gregorian_days/1	Year cannot be abbreviated.
	date_to_gregorian_days/3	 Computes the number of gregorian days starting with year 0 and ending at the specified date.
	datetime_to_gregorian_seconds/1	 Computes the number of gregorian seconds starting with year 0 and ending
at the specified date and time.
	day_of_the_week/1	 Computes the day of the week from the specified date tuple {Year, Month, Day}.
	day_of_the_week/3	 Computes the day of the week from the specified Year, Month, and Day.
	system_time_to_universal_time/2	 Convert an integer time value to a date and time in UTC.

[bookmark: functions]

Function Details

[bookmark: date_to_gregorian_days-1]

date_to_gregorian_days/1

date_to_gregorian_days(Date::date()) -> Days::gregorian_days()

Date: the date to get the gregorian day count of

returns: Days number of days

Equivalent to date_to_gregorian_days(Year, M, D).

Year cannot be abbreviated.

For example, 93 denotes year 93, not 1993. The valid range depends on the
underlying operating system. The date tuple must denote a valid date.

[bookmark: date_to_gregorian_days-3]

date_to_gregorian_days/3

date_to_gregorian_days(Year::year(), M::month(), D::day()) -> gregorian_days()

Year: ending year
M: ending month
D: ending day

returns: Days number of days

Computes the number of gregorian days starting with year 0 and ending at the specified date.

[bookmark: datetime_to_gregorian_seconds-1]

datetime_to_gregorian_seconds/1

datetime_to_gregorian_seconds(DateTime::datetime()) -> integer()

DateTime: the date and time to convert to seconds

returns: Seconds number of seconds

Computes the number of gregorian seconds starting with year 0 and ending
at the specified date and time.

[bookmark: day_of_the_week-1]

day_of_the_week/1

day_of_the_week(Date::date()) -> day_of_week()

Date: the date for which to retrieve the weekday

returns: Weekday day of the week

Equivalent to day_of_the_week(Y, M, D).

Computes the day of the week from the specified date tuple {Year, Month, Day}.
Returns the day of the week as 1: Monday, 2: Tuesday, and so on.

[bookmark: day_of_the_week-3]

day_of_the_week/3

day_of_the_week(Y::year(), M::month(), D::day()) -> day_of_week()

Y: year of the desired day
M: month of the desired day
D: year of the desired day

returns: Weekday day of the week

Computes the day of the week from the specified Year, Month, and Day.
Returns the day of the week as 1: Monday, 2: Tuesday, and so on.

[bookmark: system_time_to_universal_time-2]

system_time_to_universal_time/2

system_time_to_universal_time(Time::integer(), TimeUnit::erlang:time_unit()) -> datetime()

Time: the time, as an integer, in the specified unit
TimeUnit: the time unit

returns: DateTime The date and time (in UTC) converted from the specified time and time unit

Convert an integer time value to a date and time in UTC.

Module code

	Description

	Function Index

	Function Details

An implementation of a subset of the Erlang/OTP code interface.

[bookmark: index]

Function Index

	ensure_loaded/1	 Try to load a module if it's not already loaded.
	load_abs/1	 Load a module from a path.
	load_binary/3	 Load a module from a binary.

[bookmark: functions]

Function Details

[bookmark: ensure_loaded-1]

ensure_loaded/1

ensure_loaded(Module) -> {module, Module} | {error, embedded | any()}

	Module = atom()

Module: module to load

returns: Tuple {module, Module} if module is loaded or {error, embedded}

Try to load a module if it’s not already loaded. AtomVM works in
an embedded-like mode where modules are loaded at start-up but modules
can be loaded explicitely as well (especially from a binary with load_binary/3).
So this function can be used to determine if a module is loaded.
It is called by Elixir Code module.

[bookmark: load_abs-1]

load_abs/1

load_abs(Filename::string()) -> error | {module, module()}

Filename: path to the beam to open, without .beams suffix

returns: A tuple with the name of the module

Load a module from a path.
Error return result type is different from Erlang/OTP.

[bookmark: load_binary-3]

load_binary/3

load_binary(Module::module(), Filename::string(), Binary::binary()) -> error | {module, module()}

Module: name of the module to load
Filename: path to the beam (unused)
Binary: binary of the module to load

returns: A tuple with the name of the module

Load a module from a binary.
Error return result type is different from Erlang/OTP.
Also unlike Erlang/OTP, no check is performed to verify that Module
matches the name of the loaded module.

Module crypto

	Data Types

	Function Index

	Function Details

[bookmark: types]

Data Types

[bookmark: type-cipher_iv]cipher_iv()

cipher_iv() = aes_128_cbc | aes_192_cbc | aes_256_cbc | aes_128_cfb128 | aes_192_cfb128 | aes_256_cfb128 | aes_128_ctr | aes_192_ctr | aes_256_ctr

[bookmark: type-cipher_no_iv]cipher_no_iv()

cipher_no_iv() = aes_128_ecb | aes_192_ecb | aes_256_ecb

[bookmark: type-crypto_opt]crypto_opt()

crypto_opt() = {encrypt, boolean()} | {padding, padding()}

[bookmark: type-crypto_opts]crypto_opts()

crypto_opts() = [crypto_opt()]

[bookmark: type-digest]digest()

digest() = binary()

[bookmark: type-hash_algorithm]hash_algorithm()

hash_algorithm() = md5 | sha | sha224 | sha256 | sha384 | sha512

[bookmark: type-padding]padding()

padding() = none | pkcs_padding

[bookmark: index]

Function Index

	crypto_one_time/4	 Encrypted/decrypt data using given cipher and key.
	crypto_one_time/5	 Encrypted/decrypt data using given cipher, key, IV.
	hash/2	 Hash data using a specified hash algorithm.
	strong_rand_bytes/1	 Generate N cryptographically secure random octets
and return the result in a binary.

[bookmark: functions]

Function Details

[bookmark: crypto_one_time-4]

crypto_one_time/4

crypto_one_time(Cipher::cipher_no_iv(), Key::iodata(), Data::iodata(), FlagOrOptions::crypto_opts()) -> binary()

Cipher: a supported cipher
Key: the encryption / decryption key
Data: to be crypted or encrypted
FlagOrOptions: either just true for encryption (or false for decryption), or a proplist
for any additional option

returns: Returns crypted or encrypted data.

Encrypted/decrypt data using given cipher and key

[bookmark: crypto_one_time-5]

crypto_one_time/5

crypto_one_time(Cipher::cipher_iv(), Key::iodata(), IV::iodata(), Data::iodata(), FlagOrOptions::crypto_opts()) -> binary()

Cipher: a supported cipher that makes use of IV
Key: the encryption / decryption key
IV: an initialization vector
Data: to be crypted or encrypted
FlagOrOptions: either just true for encryption (or false for decryption), or a proplist
for any additional option such as padding.

returns: Returns crypted or encrypted data.

Encrypted/decrypt data using given cipher, key, IV.

[bookmark: hash-2]

hash/2

hash(Type::hash_algorithm(), Data::iolist()) -> digest()

Type: the hash algorithm
Data: the data to hash

returns: Returns the result of hashing the supplied data using the supplied
hash algorithm.

Hash data using a specified hash algorithm.

[bookmark: strong_rand_bytes-1]

strong_rand_bytes/1

strong_rand_bytes(N::non_neg_integer()) -> binary()

N: desired length of cryptographically secure random data

returns: Returns Cryptographically secure random data of length N

Generate N cryptographically secure random octets
and return the result in a binary.

Module erlang

	Description

	Data Types

	Function Index

	Function Details

An implementation of the Erlang/OTP erlang module, for functions
that are not already defined as NIFs.

[bookmark: types]

Data Types

[bookmark: type-atom_encoding]atom_encoding()

atom_encoding() = latin1 | utf8 | unicode

[bookmark: type-demonitor_option]demonitor_option()

demonitor_option() = flush | {flush, boolean()} | info | {info, boolean()}

[bookmark: type-float_format_option]float_format_option()

float_format_option() = {decimals, Decimals::0..57} | {scientific, Decimals::0..57} | compact

[bookmark: type-heap_growth_strategy]heap_growth_strategy()

heap_growth_strategy() = bounded_free | minimum | fibonacci

[bookmark: type-mem_type]mem_type()

mem_type() = binary

[bookmark: type-spawn_option]spawn_option()

spawn_option() = {min_heap_size, pos_integer()} | {max_heap_size, pos_integer()} | {atomvm_heap_growth, heap_growth_strategy()} | link | monitor

[bookmark: type-time_unit]time_unit()

time_unit() = second | millisecond | microsecond

[bookmark: type-timestamp]timestamp()

timestamp() = {MegaSecs::non_neg_integer(), Secs::non_neg_integer(), MicroSecs::non_neg_integer}

[bookmark: index]

Function Index

	apply/2	 Returns the result of applying Function to Args.
	apply/3	 Returns the result of applying Function in Module to Args.
	atom_to_binary/1	 Convert an atom to a binary, defaults to utf8.
	atom_to_binary/2	 Convert an atom to a binary.
	atom_to_list/1	 Convert an atom to a string.
	binary_to_atom/1	 Convert a binary to atom, defaults to utf8.
	binary_to_atom/2	 Convert a binary to atom.
	binary_to_integer/1	 Parse the text in a given binary as an integer.
	binary_to_integer/2	 Parse the text in a given binary as an integer.
	binary_to_list/1	 Convert a binary to a list of bytes.
	binary_to_term/1	Decode a term that was previously encodes with term_to_binary/1
This function should be mostly compatible with its Erlang/OTP counterpart.
	demonitor/1	 Remove a monitor.
	demonitor/2	 Remove a monitor, with options.
	display/1	 Print a term to stdout.
	erase/1	 Erase a key from the process dictionary.
	exit/1	 Raises an exception of class exit with reason Reason.
	exit/2	 Send an exit signal to target process.
	float_to_binary/1	 Convert a float to a binary.
	float_to_binary/2	 Convert a float to a binary.
	float_to_list/1	 Convert a float to a string.
	float_to_list/2	 Convert a float to a string.
	fun_to_list/1	 Create a string representing a function.
	function_exported/3	 Determine if a function is exported.
	garbage_collect/0	 Run a garbage collect in current process.
	garbage_collect/1	 Run a garbage collect in a given process.
	get/1	 Return a value associated with a given key in the process dictionary.
	get_module_info/1	 Get info for a given module.
	get_module_info/2	 Get specific info for a given module.
	group_leader/0	 Return the pid of the group leader of caller.
	group_leader/2	Set the group leader for a given process.
	integer_to_binary/1	 Convert an integer to a binary.
	integer_to_binary/2	 Convert an integer to a binary.
	integer_to_list/1	 Convert an integer to a string.
	integer_to_list/2	 Convert an integer to a string.
	iolist_to_binary/1	 Convert an IO list to binary.
	is_map/1	 Return true if Map is a map; false, otherwise.
	is_map_key/2	 Return true if Key is associated with a value in Map; false, otherwise.
	is_process_alive/1	 Determine if a process is alive.
	link/1	 Link current process with a given process.
	list_to_atom/1	 Convert a string into an atom.
	list_to_binary/1	 Convert a list into a binary.
	list_to_existing_atom/1	 Convert a string into an atom.
	list_to_integer/1	 Convert a string (list of characters) to integer.
	list_to_integer/2	 Convert a string (list of characters) to integer in specified base.
	list_to_tuple/1	 Convert a list to a tuple with the same size.
	localtime/0	Return the current time and day for system local timezone.
	make_ref/0	 Create a new reference.
	map_get/2	 Get the value in Map associated with Key, if it exists.
	map_size/1	Returns the size of (i.e., the number of entries in) the map.
	max/2	 Return the maximum value of two terms.
	md5/1	 Computes the MD5 hash of an input binary, as defined by
https://www.ietf.org/rfc/rfc1321.txt.
	memory/1	 Return the amount of memory (in bytes) used of the specified type.
	min/2	 Return the minimum value of two terms.
	monitor/2	 Create a monitor on a process or on a port.
	monotonic_time/1	 Return the monotonic time in the specified units.
	open_port/2	 Open a port.
	pid_to_list/1	 Create a string representing a pid.
	process_flag/2	 Set a flag for the current process.
	process_info/2	 Return process information.
	processes/0	 Return a list of all current processes.
	put/2	 Store a value with a given key in the process dictionary.
	ref_to_list/1	 Create a string representing a reference.
	register/2	 Register a name for a given process.
	send/2	 Send a message to a given process.
	send_after/3	 Send Msg to Dest after Time ms.
	spawn/1	 Create a new process.
	spawn/3	 Create a new process by calling exported Function from Module with Args.
	spawn_link/1	 Create a new process and link it.
	spawn_link/3	 Create a new process by calling exported Function from Module with Args
and link it.
	spawn_opt/2	 Create a new process.
	spawn_opt/4	 Create a new process by calling exported Function from Module with Args.
	start_timer/3	 Start a timer, and send {timeout, TimerRef, Msg} to Dest after
Time ms, where TimerRef is the reference returned from this function.
	system_flag/2	 Update system flags.
	system_info/1	 Return system information.
	system_time/1	 Get the current system time in provided unit.
	term_to_binary/1	Encode a term to a binary that can later be decoded with binary_to_term/1.
	timestamp/0	Return the timestamp in {MegaSec, Sec, MicroSec} format.
	universaltime/0	Return the current time and day for UTC.
	unlink/1	 Unlink current process from a given process.
	unregister/1	 Lookup a process by name.
	whereis/1	 Lookup a process by name.

[bookmark: functions]

Function Details

[bookmark: apply-2]

apply/2

apply(Function::function(), Args::[term()]) -> term()

Function: Function to call
Args: Parameters to pass to function (max 6)

returns: Returns the result of Function(Args).

Returns the result of applying Function to Args. The arity of the
function is the length of Args. Example:

 > apply(fun(R) -> lists:reverse(R) end, [[a, b, c]]).
 [c,b,a]
 > apply(fun erlang:atom_to_list/1, ['AtomVM']).
 "AtomVM"

If the number of arguments are known at compile time, the call is better
written as Function(Arg1, Arg2, …, ArgN).

[bookmark: apply-3]

apply/3

apply(Module::module(), Function::function(), Args::[term()]) -> term()

Module: Name of module
Function: Exported function name
Args: Parameters to pass to function (max 6)

returns: Returns the result of Module:Function(Args).

Returns the result of applying Function in Module to Args. The applied
function must be exported from Module. The arity of the function is the
length of Args. Example:

 > apply(lists, reverse, [[a, b, c]]).
 [c,b,a]
 > apply(erlang, atom_to_list, ['AtomVM']).
 "AtomVM"

If the number of arguments are known at compile time, the call is better
written as Module:Function(Arg1, Arg2, …, ArgN).

[bookmark: atom_to_binary-1]

atom_to_binary/1

atom_to_binary(Atom::atom()) -> binary()

Atom: Atom to convert

returns: a binary with the atom’s name

Convert an atom to a binary, defaults to utf8.
Only latin1 encoding is supported.

[bookmark: atom_to_binary-2]

atom_to_binary/2

atom_to_binary(Atom::atom(), Encoding::atom_encoding()) -> binary()

Atom: Atom to convert
Encoding: Encoding for conversion (any of latin1, utf8 or unicode)

returns: a binary with the atom’s name

Convert an atom to a binary.
Only latin1 encoding is supported.

[bookmark: atom_to_list-1]

atom_to_list/1

atom_to_list(Atom::atom()) -> string()

Atom: Atom to convert

returns: a string with the atom’s name

Convert an atom to a string.

[bookmark: binary_to_atom-1]

binary_to_atom/1

binary_to_atom(Binary::binary()) -> atom()

Binary: Binary to convert to atom

returns: an atom from passed binary

Convert a binary to atom, defaults to utf8.

[bookmark: binary_to_atom-2]

binary_to_atom/2

binary_to_atom(Binary::binary(), Encoding::atom_encoding()) -> atom()

Binary: Binary to convert to atom
Encoding: encoding for conversion (any of latin1, utf8 or unicode)

returns: an atom from passed binary

Convert a binary to atom.

[bookmark: binary_to_integer-1]

binary_to_integer/1

binary_to_integer(Binary::binary()) -> integer()

Binary: Binary to parse for integer

returns: the integer represented by the binary

Parse the text in a given binary as an integer.

[bookmark: binary_to_integer-2]

binary_to_integer/2

binary_to_integer(Binary::binary(), Base::2..36) -> integer()

Binary: Binary to parse for integer

returns: the integer represented by the binary

Parse the text in a given binary as an integer.

[bookmark: binary_to_list-1]

binary_to_list/1

binary_to_list(Binary::binary()) -> [byte()]

Binary: Binary to convert to list

returns: a list of bytes from the binary

Convert a binary to a list of bytes.

[bookmark: binary_to_term-1]

binary_to_term/1

binary_to_term(Binary::binary()) -> any()

Binary: binary to decode

returns: A term decoded from passed binary

Decode a term that was previously encodes with term_to_binary/1
This function should be mostly compatible with its Erlang/OTP counterpart.
Unlike modern Erlang/OTP, resources are currently serialized as empty
binaries and cannot be unserialized.

[bookmark: demonitor-1]

demonitor/1

demonitor(Monitor::reference()) -> true

Monitor: reference of monitor to remove

returns: true

Remove a monitor

[bookmark: demonitor-2]

demonitor/2

demonitor(Monitor::reference(), Options::[demonitor_option()]) -> boolean()

Monitor: reference of monitor to remove
Options: options list

returns: true

Remove a monitor, with options.
If flush, monitor messages are flushed and guaranteed to not be received.
If info, return true if monitor was removed, false if it was not found.
If both options are provivded, return false if flush was needed.

[bookmark: display-1]

display/1

display(Term::any()) -> true

Term: term to print

returns: true

Print a term to stdout.

[bookmark: erase-1]

erase/1

erase(Key::any()) -> any()

Key: key to erase from the process dictionary

returns: the previous value associated with this key or undefined

Erase a key from the process dictionary.

[bookmark: exit-1]

exit/1

exit(Reason::any()) -> no_return()

Reason: reason for exit

Raises an exception of class exit with reason Reason.
The exception can be caught. If it is not, the process exits.
If the exception is not caught the signal is sent to linked processes.
In this case, if Reason is kill, it is not transformed into killed and
linked processes can trap it (unlike exit/2).

[bookmark: exit-2]

exit/2

exit(Process::pid(), Reason::any()) -> true

Process: target process
Reason: reason for exit

returns: true

Send an exit signal to target process.
The consequences of the exit signal depends on Reason, on whether
Process is self() or another process and whether target process is
trapping exit.
If Reason is not kill nor normal:

	If target process is not trapping exits, it exits with Reason

	If traget process is trapping exits, it receives a message
{'EXIT', From, Reason} where From is the caller of exit/2.

If Reason is kill, the target process exits with Reason changed to
killed.
If Reason is normal and Process is not self():

	If target process is not trapping exits, nothing happens.

	If traget process is trapping exits, it receives a message
{'EXIT', From, normal} where From is the caller of exit/2.

If Reason is normal and Process is self():

	If target process is not trapping exits, it exits with normal.

	If traget process is trapping exits, it receives a message
{'EXIT', From, normal} where From is the caller of exit/2.

[bookmark: float_to_binary-1]

float_to_binary/1

float_to_binary(Float::float()) -> binary()

Float: Float to convert

returns: a binary with a text representation of the float

Convert a float to a binary.

[bookmark: float_to_binary-2]

float_to_binary/2

float_to_binary(Float::float(), Options::[float_format_option()]) -> binary()

Float: Float to convert
Options: Options for conversion

returns: a binary with a text representation of the float

Convert a float to a binary.

[bookmark: float_to_list-1]

float_to_list/1

float_to_list(Float::float()) -> string()

Float: Float to convert

returns: a string with a text representation of the float

Convert a float to a string.

[bookmark: float_to_list-2]

float_to_list/2

float_to_list(Float::float(), Options::[float_format_option()]) -> string()

Float: Float to convert
Options: Options for conversion

returns: a string with a text representation of the float

Convert a float to a string.

[bookmark: fun_to_list-1]

fun_to_list/1

fun_to_list(Fun::function()) -> string()

Fun: function to convert to a string

returns: a string representation of the function

Create a string representing a function.

[bookmark: function_exported-3]

function_exported/3

function_exported(Module::module(), Function::atom(), Arity::arity()) -> boolean()

Module: module to test
Function: function to test
Arity: arity to test

returns: true if Module exports a Function with this Arity

Determine if a function is exported

[bookmark: garbage_collect-0]

garbage_collect/0

garbage_collect() -> true

returns: true

Run a garbage collect in current process

[bookmark: garbage_collect-1]

garbage_collect/1

garbage_collect(Pid::pid()) -> boolean()

Pid: pid of the process to garbage collect

returns: true or false if the process no longer exists

Run a garbage collect in a given process.
The function returns before the garbage collect actually happens.

[bookmark: get-1]

get/1

get(Key::any()) -> any()

Key: key in the process dictionary

returns: value associated with this key or undefined

Return a value associated with a given key in the process dictionary

[bookmark: get_module_info-1]

get_module_info/1

get_module_info(Module::atom()) -> [{atom(), any()}]

Module: module to get info for

returns: A list of module info tuples

Get info for a given module.
This function is not meant to be called directly but through
Module:module_info/0 exported function.

[bookmark: get_module_info-2]

get_module_info/2

get_module_info(Module::atom(), InfoKey::atom()) -> any()

Module: module to get info for
InfoKey: info to get

returns: A term representing info for given module

Get specific info for a given module.
This function is not meant to be called directly but through
Module:module_info/1 exported function.
Supported info keys are module, exports, compile and attributes.

[bookmark: group_leader-0]

group_leader/0

group_leader() -> pid()

returns: Pid of group leader or self() if no group leader is set.

Return the pid of the group leader of caller.

[bookmark: group_leader-2]

group_leader/2

group_leader(Leader::pid(), Pid::pid()) -> true

Leader: pid of process to set as leader
Pid: pid of process to set a Leader

returns: true

Set the group leader for a given process.

[bookmark: integer_to_binary-1]

integer_to_binary/1

integer_to_binary(Integer::integer()) -> binary()

Integer: integer to convert to a binary

returns: a binary with a text representation of the integer

Convert an integer to a binary.

[bookmark: integer_to_binary-2]

integer_to_binary/2

integer_to_binary(Integer::integer(), Base::2..36) -> binary()

Integer: integer to convert to a binary
Base: base for representation

returns: a binary with a text representation of the integer

Convert an integer to a binary.

[bookmark: integer_to_list-1]

integer_to_list/1

integer_to_list(Integer::integer()) -> string()

Integer: integer to convert to a string

returns: a string representation of the integer

Convert an integer to a string.

[bookmark: integer_to_list-2]

integer_to_list/2

integer_to_list(Integer::integer(), Base::2..36) -> string()

Integer: integer to convert to a string
Base: base for representation

returns: a string representation of the integer

Convert an integer to a string.

[bookmark: iolist_to_binary-1]

iolist_to_binary/1

iolist_to_binary(IOList::iolist()) -> binary()

IOList: IO list to convert to binary

returns: a binary with the bytes of the IO list

Convert an IO list to binary.

[bookmark: is_map-1]

is_map/1

is_map(Map::map()) -> boolean()

Map: the map to test

returns: true if Map is a map; false, otherwise.

Return true if Map is a map; false, otherwise.

This function may be used in a guard expression.

[bookmark: is_map_key-2]

is_map_key/2

is_map_key(Key::term(), Map::map()) -> boolean()

Key: the key
Map: the map

returns: true if Key is associated with a value in Map; false, otherwise.

Return true if Key is associated with a value in Map; false, otherwise.

This function raises a {badmap, Map} error if Map is not a map.

This function may be used in a guard expression.

[bookmark: is_process_alive-1]

is_process_alive/1

is_process_alive(Pid::pid()) -> boolean()

Pid: pid of the process to test

returns: true if the process is alive, false otherwise

Determine if a process is alive

[bookmark: link-1]

link/1

link(Pid::pid()) -> true

Pid: process to link to

returns: true

Link current process with a given process.

[bookmark: list_to_atom-1]

list_to_atom/1

list_to_atom(String::string()) -> atom()

String: string to convert to an atom

returns: an atom from the string

Convert a string into an atom.
Unlike Erlang/OTP 20+, atoms are limited to ISO-8859-1 characters. The VM
currently aborts if passed unicode characters.
Atoms are also limited to 255 characters. Errors with system_limit_atom if
the passed string is longer.

See also: list_to_existing_atom/1.

[bookmark: list_to_binary-1]

list_to_binary/1

list_to_binary(IOList::iolist()) -> binary()

IOList: iolist to convert to binary

returns: a binary composed of bytes and binaries from the list

Convert a list into a binary.
Errors with badarg if the list is not an iolist.

[bookmark: list_to_existing_atom-1]

list_to_existing_atom/1

list_to_existing_atom(String::string()) -> atom()

String: string to convert to an atom

returns: an atom from the string

Convert a string into an atom.
This function will error with badarg if the atom does not exist

See also: list_to_atom/1.

[bookmark: list_to_integer-1]

list_to_integer/1

list_to_integer(String::string()) -> integer()

String: string to convert to integer

returns: an integer value from its string representation

Convert a string (list of characters) to integer.
Errors with badarg if the string is not a representation of an integer.

[bookmark: list_to_integer-2]

list_to_integer/2

list_to_integer(String::string(), Base::2..36) -> integer()

String: string to convert to integer
Base: string to convert to integer

returns: an integer value from its string representation

Convert a string (list of characters) to integer in specified base.
Errors with badarg if the string is not a representation of an integer or
the base is out of bounds.

[bookmark: list_to_tuple-1]

list_to_tuple/1

list_to_tuple(List::[any()]) -> tuple()

List: list to convert to tuple

returns: a tuple with elements of the list

Convert a list to a tuple with the same size.

[bookmark: localtime-0]

localtime/0

localtime() -> calendar:datetime()

returns: A tuple representing the current local time.

Return the current time and day for system local timezone.

See also: universaltime/0.

[bookmark: make_ref-0]

make_ref/0

make_ref() -> reference()

returns: a new reference

Create a new reference

[bookmark: map_get-2]

map_get/2

map_get(Key::term(), Map::map()) -> Value::term()

Key: the key to get
Map: the map from which to get the value

returns: the value in Map associated with Key, if it exists.

Get the value in Map associated with Key, if it exists.

This function raises a {badkey, Key} error if ‘Key’ does not occur in
Map or a {badmap, Map} if Map is not a map.

This function may be used in a guard expression.

[bookmark: map_size-1]

map_size/1

map_size(Map::map()) -> non_neg_integer()

Map: the map

returns: the size of the map

Returns the size of (i.e., the number of entries in) the map

This function raises a {badmap, Map} error if Map is not a map.

This function may be used in a guard expression.

[bookmark: max-2]

max/2

max(A::any(), B::any()) -> any()

A: any term
B: any term

returns: A if A > B; B, otherwise.

Return the maximum value of two terms

Terms are compared using > and follow the ordering principles defined in
https://www.erlang.org/doc/reference_manual/expressions.html#term-comparisons

[bookmark: md5-1]

md5/1

md5(Data::binary()) -> binary()

Data: data to compute hash of, as a binary.

returns: the md5 hash of the input Data, as a 16-byte binary.

Computes the MD5 hash of an input binary, as defined by
https://www.ietf.org/rfc/rfc1321.txt

[bookmark: memory-1]

memory/1

memory(Type::mem_type()) -> non_neg_integer()

Type: the type of memory to request

returns: the amount of memory (in bytes) used of the specified type

Return the amount of memory (in bytes) used of the specified type

[bookmark: min-2]

min/2

min(A::any(), B::any()) -> any()

A: any term
B: any term

returns: A if A < B; B, otherwise.

Return the minimum value of two terms

Terms are compared using < and follow the ordering principles defined in
https://www.erlang.org/doc/reference_manual/expressions.html#term-comparisons

[bookmark: monitor-2]

monitor/2

monitor(Type::process | port, Pid::pid()) -> reference()

Type: type of monitor to create
Pid: pid of the object to monitor

returns: a monitor reference

Create a monitor on a process or on a port.
When the process or the port terminates, the following message is sent to
the caller of this function:

 {'DOWN', MonitorRef, Type, Pid, Reason}

Unlike Erlang/OTP, monitors are only supported for processes and ports.

[bookmark: monotonic_time-1]

monotonic_time/1

monotonic_time(Unit::time_unit()) -> integer()

Unit: time unit

returns: monotonic time in the specified units

Return the monotonic time in the specified units.

Monotonic time varies from system to system, and should not be used
to determine, for example the wall clock time.

Instead, monotonic time should be used to compute time differences,
where the function is guaranteed to return a (not necessarily strictly)
monotonically increasing value.

For example, on ESP32 system, monotonic time is reported as the difference from
the current time and the time the ESP32 device was started, whereas on UNIX
systems the value may vary among UNIX systems (e.g., Linux, macOS, FreeBSD).

[bookmark: open_port-2]

open_port/2

open_port(PortName::{spawn, iodata()}, Options::[any()] | map()) -> pid()

PortName: Tuple {spawn, Name} identifying the port
Options: Options, meaningful for the port

returns: A pid identifying the open port

Open a port.
Unlike Erlang/OTP, ports are identified by pids.

[bookmark: pid_to_list-1]

pid_to_list/1

pid_to_list(Pid::pid()) -> string()

Pid: pid to convert to a string

returns: a string representation of the pid

Create a string representing a pid.

[bookmark: process_flag-2]

process_flag/2

process_flag(Flag::trap_exit, Value::boolean()) -> pid()

Flag: flag to change
Value: new value of the flag

returns: Previous value of the flag

Set a flag for the current process.
When trap_exit is true, exit signals are converted to messages

 {'EXIT', From, Reason}

and the process does not exit if Reason is not normal.

[bookmark: process_info-2]

process_info/2

process_info(Pid::pid(), Key::heap_size) -> {heap_size, non_neg_integer()}

Pid: the process pid.
Key: key used to find process information.

process_info(Pid::pid(), Key::total_heap_size) -> {total_heap_size, non_neg_integer()}

Pid: the process pid.
Key: key used to find process information.

process_info(Pid::pid(), Key::stack_size) -> {stack_size, non_neg_integer()}

Pid: the process pid.
Key: key used to find process information.

process_info(Pid::pid(), Key::message_queue_len) -> {message_queue_len, non_neg_integer()}

Pid: the process pid.
Key: key used to find process information.

process_info(Pid::pid(), Key::memory) -> {memory, non_neg_integer()}

Pid: the process pid.
Key: key used to find process information.

process_info(Pid::pid(), Key::links) -> {links, [pid()]}

Pid: the process pid.
Key: key used to find process information.

returns: process information for the specified pid defined by the specified key.

Return process information.

This function returns information about the specified process.
The type of information returned is dependent on the specified key.

The following keys are supported:

	heap_size the number of words used in the heap (integer), including the stack but excluding fragments

	total_heap_size the number of words used in the heap (integer) including fragments

	stack_size the number of words used in the stack (integer)

	message_queue_len the number of messages enqueued for the process (integer)

	memory the estimated total number of bytes in use by the process (integer)

	links the list of linked processes

Specifying an unsupported term or atom raises a bad_arg error.

[bookmark: processes-0]

processes/0

processes() -> [pid()]

returns: A list of pids of all processes

Return a list of all current processes.
Compared to Erlang/OTP, this function also returns native processes (ports).

[bookmark: put-2]

put/2

put(Key::any(), Value::any()) -> any()

Key: key to add to the process dictionary
Value: value to store in the process dictionary

returns: the previous value associated with this key or undefined

Store a value with a given key in the process dictionary.

[bookmark: ref_to_list-1]

ref_to_list/1

ref_to_list(Ref::reference()) -> string()

Ref: reference to convert to a string

returns: a string representation of the reference

Create a string representing a reference.

[bookmark: register-2]

register/2

register(Name::atom(), Pid::pid()) -> true

Name: name of the process to register
Pid: pid of the process to register

returns: true

Register a name for a given process.
Processes can be registered with several names.
Unlike Erlang/OTP, ports are not distinguished from processes.
Errors with badarg if the name is already registered.

[bookmark: send-2]

send/2

send(Pid::pid(), Message) -> Message

Pid: process to send the message to
Message: message to send

returns: the sent message

Send a message to a given process

[bookmark: send_after-3]

send_after/3

send_after(Time::non_neg_integer(), Dest::pid() | atom(), Msg::term()) -> reference()

Time: time in milliseconds after which to send the message.
Dest: Pid or server name to which to send the message.
Msg: Message to send to Dest after Time ms.

returns: a reference that can be used to cancel the timer, if desired.

Send Msg to Dest after Time ms.

[bookmark: spawn-1]

spawn/1

spawn(Function::function()) -> pid()

Function: function to create a process from

returns: pid of the new process

Create a new process

[bookmark: spawn-3]

spawn/3

spawn(Module::module(), Function::atom(), Args::[any()]) -> pid()

Module: module of the function to create a process from
Function: name of the function to create a process from
Args: arguments to pass to the function to create a process from

returns: pid of the new process

Create a new process by calling exported Function from Module with Args.

[bookmark: spawn_link-1]

spawn_link/1

spawn_link(Function::function()) -> pid()

Function: function to create a process from

returns: pid of the new process

Create a new process and link it.

[bookmark: spawn_link-3]

spawn_link/3

spawn_link(Module::module(), Function::atom(), Args::[any()]) -> pid()

Module: module of the function to create a process from
Function: name of the function to create a process from
Args: arguments to pass to the function to create a process from

returns: pid of the new process

Create a new process by calling exported Function from Module with Args
and link it.

[bookmark: spawn_opt-2]

spawn_opt/2

spawn_opt(Function::function(), Options::[spawn_option()]) -> pid() | {pid(), reference()}

Function: function to create a process from
Options: additional options.

returns: pid of the new process

Create a new process.

[bookmark: spawn_opt-4]

spawn_opt/4

spawn_opt(Module::module(), Function::atom(), Args::[any()], Options::[spawn_option()]) -> pid() | {pid(), reference()}

Module: module of the function to create a process from
Function: name of the function to create a process from
Args: arguments to pass to the function to create a process from
Options: additional options.

returns: pid of the new process

Create a new process by calling exported Function from Module with Args.

[bookmark: start_timer-3]

start_timer/3

start_timer(Time::non_neg_integer(), Dest::pid() | atom(), Msg::term()) -> reference()

Time: time in milliseconds after which to send the timeout message.
Dest: Pid or server name to which to send the timeout message.
Msg: Message to send to Dest after Time ms.

returns: a reference that can be used to cancel the timer, if desired.

Start a timer, and send {timeout, TimerRef, Msg} to Dest after
Time ms, where TimerRef is the reference returned from this function.

[bookmark: system_flag-2]

system_flag/2

system_flag(Key::atom(), Value::term()) -> term()

Key: key used to change system flag.
Value: value to change

returns: previous value of the flag.

Update system flags.

This function allows to modify system flags at runtime.

The following key is supported on SMP builds:

	schedulers_online the number of schedulers online

Specifying an unsupported atom key will result in a bad_arg error.
Specifying a term that is not an atom will result in a bad_arg error.

[bookmark: system_info-1]

system_info/1

system_info(Key::atom()) -> term()

Key: key used to find system information.

returns: system information defined by the specified key.

Return system information.

This function returns information about the system on which AtomVM is
running. The type of information returned is dependent on the specified key.

The following keys are supported on all platforms:

	process_count the number of processes running in the node (integer)

	port_count the number of ports running in the node (integer)

	atom_count the number of atoms currently allocated (integer)

	system_architecture the processor and OS architecture (binary)

	version the version of the AtomVM executable image (binary)

	wordsize the number of bytes in a machine word on the current platform (integer)

	schedulers the number of schedulers, equal to the number of online processors (integer)

	schedulers_online the current number of schedulers (integer)

The following keys are supported on the ESP32 platform:

	esp32_free_heap_size the number of (noncontiguous) free bytes in the ESP32 heap (integer)

	esp32_largest_free_block the number of the largest contiguous free bytes in the ESP32 heap (integer)

	esp32_minimum_free_size the smallest number of free bytes in the ESP32 heap since boot (integer)

Additional keys may be supported on some platforms that are not documented here.

Specifying an unsupported atom key will results in returning the atom ‘undefined’.

Specifying a term that is not an atom will result in a bad_arg error.

[bookmark: system_time-1]

system_time/1

system_time(Unit::time_unit()) -> non_neg_integer()

Unit: Unit to return system time in

returns: An integer representing system time

Get the current system time in provided unit.

[bookmark: term_to_binary-1]

term_to_binary/1

term_to_binary(Term::any()) -> binary()

Term: term to encode

returns: A binary encoding passed term.

Encode a term to a binary that can later be decoded with binary_to_term/1.
This function should be mostly compatible with its Erlang/OTP counterpart.
Unlike modern Erlang/OTP, resources are currently serialized as empty
binaries.

[bookmark: timestamp-0]

timestamp/0

timestamp() -> erlang:timestamp()

returns: A tuple representing the current timestamp.

Return the timestamp in {MegaSec, Sec, MicroSec} format.
This the old format returned by erlang:now/0. Please note that the latter
which is deprecated in Erlang/OTP is not implemented by AtomVM.

See also: monotonic_time/1, system_time/1.

[bookmark: universaltime-0]

universaltime/0

universaltime() -> calendar:datetime()

returns: A tuple representing the current universal time.

Return the current time and day for UTC.

See also: localtime/0.

[bookmark: unlink-1]

unlink/1

unlink(Pid::pid()) -> true

Pid: process to unlink from

returns: true

Unlink current process from a given process.

[bookmark: unregister-1]

unregister/1

unregister(Name::atom()) -> true

Name: name to unregister

returns: true

Lookup a process by name.
Unlike Erlang/OTP, ports are not distinguished from processes.
Errors with badarg if the name is not registered.

[bookmark: whereis-1]

whereis/1

whereis(Name::atom()) -> pid() | undefined

Name: name of the process to locate

returns: undefined or the pid of the registered process

Lookup a process by name.

Module erts_debug

	Description

	Function Index

	Function Details

An implementation of a subset of the Erlang/OTP erts_debug interface.

[bookmark: index]

Function Index

	flat_size/1	 Return the size, in terms, of a given term.

[bookmark: functions]

Function Details

[bookmark: flat_size-1]

flat_size/1

flat_size(Term::any()) -> non_neg_integer()

Term: term to get the size of

returns: A size

Return the size, in terms, of a given term.

Module gen_event

	Function Index

	Function Details

[bookmark: index]

Function Index

	add_handler/3	
	delete_handler/3	
	notify/2	
	start/0	
	start/2	
	start_link/0	
	start_link/2	
	stop/1	
	sync_notify/2	

[bookmark: functions]

Function Details

[bookmark: add_handler-3]

add_handler/3

add_handler(EventMgrRef, Handler, Args) -> any()

[bookmark: delete_handler-3]

delete_handler/3

delete_handler(EventMgrRef, Handler, Args) -> any()

[bookmark: notify-2]

notify/2

notify(EventMgrRef, Event) -> any()

[bookmark: start-0]

start/0

start() -> any()

[bookmark: start-2]

start/2

start(EventMgrName, Options) -> any()

[bookmark: start_link-0]

start_link/0

start_link() -> any()

[bookmark: start_link-2]

start_link/2

start_link(EventMgrName, Options) -> any()

[bookmark: stop-1]

stop/1

stop(EventManagerRef) -> any()

[bookmark: sync_notify-2]

sync_notify/2

sync_notify(EventMgrRef, Event) -> any()

Module gen_server

	Description

	Data Types

	Function Index

	Function Details

An implementation of the Erlang/OTP gen_server interface.

This module defines the gen_server behaviour.
 Required callback functions: init/1, handle_call/3, handle_cast/2.

[bookmark: description]

Description

This module implements a strict subset of the Erlang/OTP gen_server
interface, supporting operations for local creation and management of
gen_server instances.

This module is designed to be API-compatible with gen_server, with exceptions noted
below.

Caveats:

	Support only for locally named procs

	No support for abcast

	No support for enter_loop

	No support for format_status

	No support for multi_call

[bookmark: types]

Data Types

[bookmark: type-from]from()

from() = any()

[bookmark: type-options]options()

options() = [{atom(), term()}]

[bookmark: type-server_ref]server_ref()

server_ref() = atom() | pid()

[bookmark: index]

Function Index

	call/2	 Send a request to a gen_server instance, and wait for a reply.
	call/3	 Send a request to a gen_server instance, and wait for a reply.
	cast/2	 Send a request to a gen_server instance.
	init_it/4	
	init_it/5	
	reply/2	 Send a reply to a calling client.
	start/3	 Start an un-named gen_server.
	start/4	 Start a named gen_server.
	start_link/3	 Start and link an un-named gen_server.
	start_link/4	 Start and link a named gen_server.
	start_monitor/3	 Start and monitor an un-named gen_server.
	start_monitor/4	 Start and monitor a named gen_server.
	stop/1	 Stop a previously started gen_server instance.
	stop/3	 Stop a previously started gen_server instance.

[bookmark: functions]

Function Details

[bookmark: call-2]

call/2

call(ServerRef::server_ref(), Request::term()) -> Reply::term() | {error, Reason::term()}

Equivalent to call(ServerRef, Request, 5000).

Send a request to a gen_server instance, and wait for a reply.

[bookmark: call-3]

call/3

call(ServerRef::server_ref(), Request::term(), TimeoutMs::timeout()) -> Reply::term() | {error, Reason::term()}

ServerRef: a reference to the gen_server acquired via start
Request: the request to send to the gen_server
TimeoutMs: the amount of time in milliseconds to wait for a reply

returns: the reply sent back from the gen_server; {error, Reason}, otherwise.

Send a request to a gen_server instance, and wait for a reply.

This function will send the specified request to the specified
gen_server instance, and wait at least Timeout milliseconds for a
reply from the gen_server.

[bookmark: cast-2]

cast/2

cast(ServerRef::server_ref(), Request::term()) -> ok | {error, Reason::term()}

ServerRef: a reference to the gen_server acquired via start
Request: the request to send to the gen_server

returns: ok | {error, Reason}

Send a request to a gen_server instance.

This function will send the specified request to the specified
gen_server instance, but will not wait for a reply.

[bookmark: init_it-4]

init_it/4

init_it(Starter, Module, Args, Options) -> any()

[bookmark: init_it-5]

init_it/5

init_it(Starter, Name, Module, Args, Options) -> any()

[bookmark: reply-2]

reply/2

reply(From::from(), Reply::term()) -> term()

From: the client to whom to send the reply
Reply: the reply to send to the client

returns: an arbitrary term, that should be ignored

Send a reply to a calling client.

This function will send the specified reply back to the specified
gen_server client (e.g, via call/3). The return value of this
function can be safely ignored.

[bookmark: start-3]

start/3

start(Module::module(), Args::term(), Options::options()) -> {ok, pid()} | {error, Reason::term()}

Module: the module in which the gen_server callbacks are defined
Args: the arguments to pass to the module’s init callback
Options: the options used to create the gen_server

returns: the gen_server pid, if successful; {error, Reason}, otherwise.

Start an un-named gen_server.

This function will start a gen_server instance.

Note. The Options argument is currently ignored.

[bookmark: start-4]

start/4

start(ServerName::{local, Name::atom()}, Module::module(), Args::term(), Options::options()) -> {ok, pid()} | {error, Reason::term()}

ServerName: the name with which to register the gen_server
Module: the module in which the gen_server callbacks are defined
Args: the arguments to pass to the module’s init callback
Options: the options used to create the gen_server

returns: the gen_server pid, if successful; {error, Reason}, otherwise.

Start a named gen_server.

This function will start a gen_server instance and register the
newly created process with the process registry. Subsequent calls
may use the gen_server name, in lieu of the process id.

Note. The Options argument is currently ignored.

[bookmark: start_link-3]

start_link/3

start_link(Module::module(), Args::term(), Options::options()) -> {ok, pid()} | {error, Reason::term()}

Module: the module in which the gen_server callbacks are defined
Args: the arguments to pass to the module’s init callback
Options: the options used to create the gen_server

returns: the gen_server pid, if successful; {error, Reason}, otherwise.

Start and link an un-named gen_server.

This function will start a gen_server instance.

Note. The Options argument is currently ignored.

[bookmark: start_link-4]

start_link/4

start_link(ServerName::{local, Name::atom()}, Module::module(), Args::term(), Options::options()) -> {ok, pid()} | {error, Reason::term()}

ServerName: the name with which to register the gen_server
Module: the module in which the gen_server callbacks are defined
Args: the arguments to pass to the module’s init callback
Options: the options used to create the gen_server

returns: the gen_server pid, if successful; {error, Reason}, otherwise.

Start and link a named gen_server.

This function will start a gen_server instance and register the
newly created process with the process registry. Subsequent calls
may use the gen_server name, in lieu of the process id.

Note. The Options argument is currently ignored.

[bookmark: start_monitor-3]

start_monitor/3

start_monitor(Module::module(), Args::term(), Options::options()) -> {ok, {Pid::pid(), MonRef::reference()}} | {error, Reason::term()}

Module: the module in which the gen_server callbacks are defined
Args: the arguments to pass to the module’s init callback
Options: the options used to create the gen_server

returns: the gen_server pid and monitor reference tuple if successful;
{error, Reason}, otherwise.

Start and monitor an un-named gen_server.

This function will start a gen_server instance.

Note. The Options argument is currently ignored.

[bookmark: start_monitor-4]

start_monitor/4

start_monitor(ServerName::{local, Name::atom()}, Module::module(), Args::term(), Options::options()) -> {ok, {Pid::pid(), MonRef::reference()}} | {error, Reason::term()}

ServerName: the name with which to register the gen_server
Module: the module in which the gen_server callbacks are defined
Args: the arguments to pass to the module’s init callback
Options: the options used to create the gen_server

returns: the gen_server pid and monitor reference tuple if successful;
{error, Reason}, otherwise.

Start and monitor a named gen_server.

This function will start a gen_server instance and register the
newly created process with the process registry. Subsequent calls
may use the gen_server name, in lieu of the process id.

Note. The Options argument is currently ignored.

[bookmark: stop-1]

stop/1

stop(ServerRef::server_ref()) -> ok | {error, Reason::term()}

Equivalent to stop(ServerRef, normal, infinity).

Stop a previously started gen_server instance.

[bookmark: stop-3]

stop/3

stop(ServerRef::server_ref(), Reason::term(), Timeout::non_neg_integer() | infinity) -> ok | {error, Reason::term()}

ServerRef: a reference to the gen_server acquired via start
Reason: reason to be supplied to callback function
Timeout: ms to wait for successful stop

returns: ok, if the gen_server stopped; {error, Reason}, otherwise.

Stop a previously started gen_server instance.

This function will stop a gen_server instance, providing the supplied
Reason to the gen_server’s terminate/2 callback function.
If the gen_server is named, then the gen_server name may be used
to stop the gen_server.

Module gen_statem

	Description

	Data Types

	Function Index

	Function Details

An implementation of the Erlang/OTP gen_statem interface.

This module defines the gen_statem behaviour.
 Required callback functions: init/1, callback_mode/0.

[bookmark: description]

Description

This module implements a strict subset of the Erlang/OTP gen_statem
interface, supporting operations for local creation and management of
gen_statem instances.

This module is designed to be API-compatible with gen_statem, with exceptions noted
below.

Caveats:

	No support for start_link

	Support only for locally named gen_statem instances

	Support only for state function event handlers

	No support for keep_state or repeat_state return values from Module:StateName/3 callbacks

	No support for postpone or hibernate state transition actions

	No support for state enter calls

	No support for multi_call

[bookmark: types]

Data Types

[bookmark: type-options]options()

options() = [{atom(), term()}]

[bookmark: type-server_ref]server_ref()

server_ref() = atom() | pid()

[bookmark: index]

Function Index

	call/2	 Send a request to a gen_statem instance, and wait for a reply.
	call/3	 Send a request to a gen_statem instance, and wait for a reply..
	cast/2	 Send a request to a gen_statem instance.
	reply/2	 Send a reply to a calling client.
	start/3	 Start an un-named gen_statem.
	start/4	 Start a named gen_statem.
	start_link/3	 Start an un-named gen_statem.
	start_link/4	 Start a named gen_statem.
	stop/1	 Stop a previously started gen_statem.
	stop/3	 Stop a previously started gen_statem instance.

[bookmark: functions]

Function Details

[bookmark: call-2]

call/2

call(ServerRef::server_ref(), Request::term()) -> Reply::term() | {error, Reason::term()}

Equivalent to call(ServerRef, Request, infinity).

Send a request to a gen_statem instance, and wait for a reply.

[bookmark: call-3]

call/3

call(ServerRef::server_ref(), Request::term(), Timeout::timeout()) -> Reply::term() | {error, Reason::term()}

ServerRef: a reference to the gen_statem acquired via start
Request: the request to send to the gen_statem
Timeout: the amount of time in milliseconds to wait for a reply

returns: the reply sent back from the gen_statem; {error, Reason}, otherwise.

Send a request to a gen_statem instance, and wait for a reply..

This function will send the specified request to the specified
gen_statem instance, and wait at least Timeout milliseconds for a
reply from the gen_statem.

[bookmark: cast-2]

cast/2

cast(ServerRef::server_ref(), Request::term()) -> ok | {error, Reason::term()}

ServerRef: a reference to the gen_statem acquired via start
Request: the request to send to the gen_statem

returns: ok | {error, Reason}

Send a request to a gen_statem instance.

This function will send the specified request to the specified
gen_statem instance, but will not wait for a reply.

[bookmark: reply-2]

reply/2

reply(Client::pid(), Reply::term()) -> term()

Client: the client to whom to send the reply
Reply: the reply to send to the client

returns: an arbitrary term, that should be ignored

Send a reply to a calling client.

This function will send the specified reply back to the specified
gen_statem client (e.g, via call/3). The return value of this
function can be safely ignored.

[bookmark: start-3]

start/3

start(Module::module(), Args::term(), Options::options()) -> {ok, pid()} | {error, Reason::term()}

Module: the module in which the gen_statem callbacks are defined
Args: the arguments to pass to the module’s init callback
Options: the options used to create the gen_statem

returns: the gen_statem pid, if successful; {error, Reason}, otherwise.

Start an un-named gen_statem.

This function will start a gen_statem instance.

Note. The Options argument is currently ignored.

[bookmark: start-4]

start/4

start(ServerName::{local, Name::atom()}, Module::module(), Args::term(), Options::options()) -> {ok, pid()} | {error, Reason::term()}

ServerName: the name with which to register the gen_statem
Module: the module in which the gen_statem callbacks are defined
Args: the arguments to pass to the module’s init callback
Options: the options used to create the gen_statem

returns: the gen_statem pid, if successful; {error, Reason}, otherwise.

Start a named gen_statem.

This function will start a gen_statem instance and register the
newly created process with the process registry. Subsequent calls
may use the gen_statem name, in lieu of the process id.

Note. The Options argument is currently ignored.

[bookmark: start_link-3]

start_link/3

start_link(Module::module(), Args::term(), Options::options()) -> {ok, pid()} | {error, Reason::term()}

Module: the module in which the gen_statem callbacks are defined
Args: the arguments to pass to the module’s init callback
Options: the options used to create the gen_statem

returns: the gen_statem pid, if successful; {error, Reason}, otherwise.

Start an un-named gen_statem.

This function will start a gen_statem instance.

This version of the start function will link the started gen_statem
process to the calling process.

Note. The Options argument is currently ignored.

[bookmark: start_link-4]

start_link/4

start_link(ServerName::{local, Name::atom()}, Module::module(), Args::term(), Options::options()) -> {ok, pid()} | {error, Reason::term()}

ServerName: the name with which to register the gen_statem
Module: the module in which the gen_statem callbacks are defined
Args: the arguments to pass to the module’s init callback
Options: the options used to create the gen_statem

returns: the gen_statem pid, if successful; {error, Reason}, otherwise.

Start a named gen_statem.

This function will start a gen_statem instance and register the
newly created process with the process registry. Subsequent calls
may use the gen_statem name, in lieu of the process id.

This version of the start function will link the started gen_statem
process to the calling process.

Note. The Options argument is currently ignored.

[bookmark: stop-1]

stop/1

stop(ServerRef::server_ref()) -> ok | {error, Reason::term()}

Equivalent to stop(ServerRef, normal, infinity).

Stop a previously started gen_statem.

[bookmark: stop-3]

stop/3

stop(ServerRef::server_ref(), Reason::term(), Timeout::non_neg_integer() | infinity) -> ok | {error, Reason::term()}

ServerRef: a reference to the gen_statem acquired via start
Reason: the reason to supply for stopping
Timeout: maximum time to wait for shutdown

returns: ok, if the gen_statem stopped; {error, Reason}, otherwise.

Stop a previously started gen_statem instance.

This function will stop a gen_statem instance, providing the supplied
Reason to the . If the gen_statem is
a named gen_statem, then the gen_statem name may be used to stop the gen_statem.

Module gen_tcp

	Description

	Data Types

	Function Index

	Function Details

A partial implementation of the Erlang/OTP gen_tcp interface.

[bookmark: description]

Description

This module provides an implementation of a subset of the functionality of
the Erlang/OTP gen_tcp interface. It is designed to be API-compatible with
gen_tcp, with exceptions noted below.

This interface may be used to send and receive TCP packets, as either
binaries or strings. Active and passive modes are supported for receiving data.

Caveats:

	Limited support for socket tuning parameters

	No support for controlling_process/2

Note. Port drivers for this interface are not supportedon all AtomVM platforms.
[bookmark: types]

Data Types

[bookmark: type-connect_option]connect_option()

connect_option() = option()

[bookmark: type-listen_option]listen_option()

listen_option() = option()

[bookmark: type-option]option()

option() = {active, boolean()} | {buffer, pos_integer()} | {timeout, timeout()} | list | binary | {binary, boolean()} | {inet_backend, inet | socket}

[bookmark: type-packet]packet()

packet() = string() | binary()

[bookmark: type-reason]reason()

reason() = term()

[bookmark: index]

Function Index

	accept/1	 Accept a connection on a listening socket.
	accept/2	 Accept a connection on a listening socket.
	close/1	 Close the socket.
	connect/3	 Connect to a TCP endpoint on the specified address and port.
	controlling_process/2	 Assign a controlling process to the socket.
	listen/2	 Create a server-side listening socket.
	recv/2	 Receive a packet over a TCP socket from a source address/port.
	recv/3	 Receive a packet over a TCP socket from a source address/port.
	send/2	 Send data over the specified socket to a TCP endpoint.

[bookmark: functions]

Function Details

[bookmark: accept-1]

accept/1

accept(Socket::inet:socket()) -> {ok, Socket::inet:socket()} | {error, Reason::reason()}

Socket: the listening socket.

returns: a connection-based (tcp) socket that can be used for reading and writing

Accept a connection on a listening socket.

[bookmark: accept-2]

accept/2

accept(Socket::inet:socket(), Timeout::timeout()) -> {ok, Socket::inet:socket()} | {error, Reason::reason()}

Socket: the listening socket.
Timeout: amount of time in milliseconds to wait for a connection

returns: a connection-based (tcp) socket that can be used for reading and writing

Accept a connection on a listening socket.

[bookmark: close-1]

close/1

close(Socket::inet:socket()) -> ok

Socket: the socket to close

returns: ok.

Close the socket.

[bookmark: connect-3]

connect/3

connect(Address::inet:ip_address() | inet:hostname(), Port::inet:port_number(), Options::[connect_option()]) -> {ok, Socket::inet:socket()} | {error, Reason::reason()}

Address: the address to which to connect
Port: the port to which to connect
Options: options for controlling the behavior of the socket (see below)

returns: {ok, Socket} | {error, Reason}

Connect to a TCP endpoint on the specified address and port.

If successful, this function will return a Socket which can be used
with the send/2 and recv/2 and recv/3 functions in this module.

The following options are supported:

	active Active mode (default: true)

	buffer Size of the receive buffer to use in active mode (default: 512)

	binary data is received as binaries (as opposed to lists)

	list data is received as lists (default)

If the socket is connected in active mode, then the calling process
will receive messages of the form {tcp, Socket, Packet} when
data is received on the socket. If active mode is set to false, then
applications need to explicitly call one of the recv operations
in order to receive data on the socket.

[bookmark: controlling_process-2]

controlling_process/2

controlling_process(Socket::inet:socket(), Pid::pid()) -> ok | {error, Reason::reason()}

Socket: the socket to which to assign the pid
Pid: Pid to which to send messages

returns: ok | {error, Reason}.

Assign a controlling process to the socket. The controlling
process will receive messages from the socket.

This function will return {error, not_owner} if the calling process
is not the current controlling process.

By default, the controlling process is the process associated with
the creation of the Socket.

[bookmark: listen-2]

listen/2

listen(Port::inet:port_number(), Options::[listen_option()]) -> {ok, Socket::inet:socket()} | {error, Reason::reason()}

Port: the port number on which to listen. Specify 0 to use an OS-assigned
port number, which can then be retrieved via the inet:port/1
function.
Options: A list of configuration parameters.

returns: a listening socket, which is appropriate for use in accept/1

Create a server-side listening socket.

This function is currently unimplemented

[bookmark: recv-2]

recv/2

recv(Socket::inet:socket(), Length::non_neg_integer()) -> {ok, packet()} | {error, Reason::reason()}

Equivalent to recv(Socket, Length, infinity).

Receive a packet over a TCP socket from a source address/port.

[bookmark: recv-3]

recv/3

recv(Socket::inet:socket(), Length::non_neg_integer(), Timeout::non_neg_integer()) -> {ok, packet()} | {error, Reason::reason()}

Socket: the socket over which to receive a packet
Length: the maximum length to read of the received packet
Timeout: the amount of time to wait for a packet to arrive

returns: {ok, Packet} | {error, Reason}

Receive a packet over a TCP socket from a source address/port.

This function is used when the socket is not created in active mode.
The received packet data returned from this call, and should be of
length no greater than the specified length. This function will return
{error, closed} if the server gracefully terminates the server side
of the connection.

This call will block until data is received or a timeout occurs.

Note. Currently, the Timeout parameter isignored.

[bookmark: send-2]

send/2

send(Socket::inet:socket(), Packet::packet()) -> ok | {error, Reason::reason()}

Socket: The Socket obtained via connect/3
Packet: the data to send

returns: ok | {error, Reason}

Send data over the specified socket to a TCP endpoint.

If successful, this function will return the atom ok;
otherwise, an error with a reason.

Module gen_udp

	Description

	Data Types

	Function Index

	Function Details

An implementation of the Erlang/OTP gen_udp interface.

[bookmark: description]

Description

This module provides an implementation of a subset of the functionality of
the Erlang/OTP gen_udp interface. It is designed to be API-compatible with
gen_udp, with exceptions noted below.

This interface may be used to send and receive UDP packets, as either
binaries or strings. Active and passive modes are supported for receiving data.

Caveats:

	Currently no support for IPv6

	Currently limited support for socket tuning parameters

	Currently no support for closing sockets

Note. Port drivers for this interface are not supportedon all AtomVM platforms.
[bookmark: types]

Data Types

[bookmark: type-option]option()

option() = {active, boolean()} | {buffer, pos_integer()} | {timeout, timeout()} | list | binary | {binary, boolean()} | {inet_backend, inet | socket}

[bookmark: type-packet]packet()

packet() = string() | binary()

[bookmark: type-reason]reason()

reason() = term()

[bookmark: index]

Function Index

	close/1	 Close the socket.
	controlling_process/2	 Assign a controlling process to the socket.
	open/1	 Create a UDP socket.
	open/2	 Create a UDP socket.
	recv/2	 Receive a packet over a UDP socket from a source address/port.
	recv/3	 Receive a packet over a UDP socket from a source address/port.
	send/4	 Send a packet over a UDP socket to a target address/port.

[bookmark: functions]

Function Details

[bookmark: close-1]

close/1

close(Socket::inet:socket()) -> ok

Socket: the socket to close

returns: ok

Close the socket.

[bookmark: controlling_process-2]

controlling_process/2

controlling_process(Socket::inet:socket(), Pid::pid()) -> ok | {error, Reason::reason()}

Socket: the socket to which to assign the pid
Pid: Pid to which to send messages

returns: ok | {error, Reason}.

Assign a controlling process to the socket. The controlling
process will receive messages from the socket.

This function will return {error, not_owner} if the calling process
is not the current controlling process.

By default, the controlling process is the process associated with
the creation of the Socket.

[bookmark: open-1]

open/1

open(PortNum::inet:port_number()) -> {ok, inet:socket()} | {error, Reason::reason()}

Equivalent to open(PortNum, []).

Create a UDP socket. This function will instantiate a UDP socket
that may be used to
send or receive UDP messages.

[bookmark: open-2]

open/2

open(PortNum::inet:port_number(), Options::[option()]) -> {ok, inet:socket()} | {error, Reason::reason()}

PortNum: the port number to bind to. Specify 0 to use an OS-assigned
port number, which can then be retrieved via the inet:port/1
function.
Options: A list of configuration parameters.

returns: an opaque reference to the socket instance, used in subsequent
commands.

throws bad_arg

Create a UDP socket. This function will instantiate a UDP socket
that may be used to send or receive UDP messages.
This function will raise an exception with the bad_arg atom if
there is no socket driver supported for the target platform.

Note. The Params argument is currently ignored.

[bookmark: recv-2]

recv/2

recv(Socket::inet:socket(), Length::non_neg_integer()) -> {ok, {inet:ip_address(), inet:port_number(), packet()}} | {error, reason()}

Equivalent to recv(Socket, Length, infinity).

Receive a packet over a UDP socket from a source address/port.

[bookmark: recv-3]

recv/3

recv(Socket::inet:socket(), Length::non_neg_integer(), Timeout::timeout()) -> {ok, {inet:ip_address(), inet:port_number(), packet()}} | {error, reason()}

Socket: the socket over which to receive a packet
Length: the maximum length to read of the received packet
Timeout: the amount of time to wait for a packet to arrive

returns: {ok, {Address, Port, Packet}} | {error, Reason}

Receive a packet over a UDP socket from a source address/port.
The address and port of the received packet, as well as
the received packet data, are returned from this call. This
call will block until data is received or a timeout occurs.

Note. Currently Length and Timeout parameters areignored.

Note. Currently the length of the received packetis limited to 128 bytes.

[bookmark: send-4]

send/4

send(Socket::inet:socket(), Address::inet:ip_address(), PortNum::inet:port_number(), Packet::packet()) -> ok | {error, reason()}

Socket: the socket over which to send a packet
Address: the target address to which to send the packet
PortNum: the port on target address to which to send the packet
Packet: the packet of data to send

returns: ok | {error, Reason}

Send a packet over a UDP socket to a target address/port.

Note. Currently only ipv4 addresses are supported.

Module inet

	Data Types

	Function Index

	Function Details

[bookmark: types]

Data Types

[bookmark: type-hostname]hostname()

hostname() = iodata()

[bookmark: type-ip4_address]ip4_address()

ip4_address() = {0..255, 0..255, 0..255, 0..255}

[bookmark: type-ip_address]ip_address()

ip_address() = ip4_address()

[bookmark: type-moniker]moniker()

moniker() = ?GEN_TCP_MONIKER | ?GEN_UDP_MONIKER

[bookmark: type-port_number]port_number()

port_number() = 0..65535

[bookmark: type-socket]socket()

socket() = {moniker(), socket_impl(), module()}

[bookmark: type-socket_impl]socket_impl()

socket_impl() = any()

[bookmark: index]

Function Index

	close/1	 Close the socket.
	peername/1	 The address and port representing the "remote" end of a connection.
	port/1	 Retrieve the actual port number to which the socket is bound.
	sockname/1	 The address and port representing the "local" end of a connection.

[bookmark: functions]

Function Details

[bookmark: close-1]

close/1

close(Socket::socket()) -> ok

Socket: the socket to close

returns: ok.

Close the socket.

[bookmark: peername-1]

peername/1

peername(Socket::socket()) -> {ok, {ip_address(), port_number()}} | {error, Reason::term()}

Socket: the socket

returns: The address and port of the remote end of an established connection.

The address and port representing the “remote” end of a connection.
This function should be called on a running socket instance.

[bookmark: port-1]

port/1

port(Socket::socket()) -> port_number()

Socket: the socket from which to obtain the port number

returns: the port number associated with the local socket

Retrieve the actual port number to which the socket is bound.
This function is useful if the port assignment is done by the
operating system.

[bookmark: sockname-1]

sockname/1

sockname(Socket::socket()) -> {ok, {ip_address(), port_number()}} | {error, Reason::term()}

Socket: the socket

returns: The address and port of the local end of an established connection.

The address and port representing the “local” end of a connection.
This function should be called on a running socket instance.

Module io

	Description

	Function Index

	Function Details

An implementation of the Erlang/OTP io interface.

[bookmark: description]

Description

This module implements a strict subset of the Erlang/OTP io interface.[bookmark: index]

Function Index

	format/1	 Equivalent to format(Format, []).
	format/2	 Format string and data to console.
	get_line/1	 Read string from console with prompt.
	put_chars/1	 Writes the given character(s) to the console.
	put_chars/2	 Writes the given character(s) to the console.

[bookmark: functions]

Function Details

[bookmark: format-1]

format/1

format(Format::string()) -> string()

Equivalent to format(Format, []).

[bookmark: format-2]

format/2

format(Format::string(), Args::list()) -> string()

Format: format string
Args: format argument

returns: string

Format string and data to console.
See io_lib:format/2 for information about
formatting capabilities.

[bookmark: get_line-1]

get_line/1

get_line(Prompt::string()) -> string()

Prompt: prompt for user input

returns: string

Read string from console with prompt.

[bookmar